An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules

被引:210
作者
Li, SH [1 ]
Li, W [1 ]
Fang, T [1 ]
机构
[1] Nanjing Univ, Lab Mesoscop Chem, Inst Theoret & Computat Chem, Dept Chem, Nanjing 210093, Peoples R China
关键词
D O I
10.1021/ja0427247
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules at the Hartree-Fock (HF) and post-HF levels is described. The physical foundation of this approach is attributed to the "quantum locality" of the electron correlation energy and the HF total energy, which is revealed by a new energy decomposition analysis of the FIF total energy proposed in this work. This approach is based on the molecular fractionation with conjugated caps (MFCC) scheme (Zhang, D. W.; Zhang, J. Z. H. J. Chem. Phys. 2003,119, 3599), by which a macromolecule is partitioned into various capped fragments and conjugated caps formed by two adjacent caps. We find that the MFCC scheme, if corrected by the interaction between non-neighboring fragments, can be used to predict the total energy of large molecules only from energy calculations on a series of small subsystems. The approach, named as energy-corrected MFCC (EC-MFCC), computationally achieves linear scaling with the molecular size. Our test calculations on a broad range of medium- and large molecules demonstrate that this approach is able to reproduce the conventional HF and second-order Moller-Plesset perturbation theory (MP2) energies within a few millihartree in most cases. With the EC-MFCC optimization algorithm described in this work, we have obtained the optimized structures of long oligomers of trans-polyacetylene and BN nanotubes with up to about 400 atoms, which are beyond the reach of traditional computational methods. In addition, the EC-MFCC approach is also applied to estimate the heats of formation for a series of organic compounds. This approach provides an appealing approach alternative to the traditional additivity rules based on either bond or group contributions for the estimation of thermochemical properties.
引用
收藏
页码:7215 / 7226
页数:12
相关论文
共 89 条
[1]  
[Anonymous], 1996, MOL MODELLING PRINCI
[2]   Atom pair partitioning of the correlation energy [J].
Ayala, PY ;
Scuseria, GE .
CHEMICAL PHYSICS LETTERS, 2000, 322 (3-4) :213-218
[3]   Linear scaling second-order Moller-Plesset theory in the atomic orbital basis for large molecular systems [J].
Ayala, PY ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :3660-3671
[4]   Tailoring approach for exploring electron densities and electrostatic potentials of molecular crystals [J].
Babu, K ;
Ganesh, V ;
Gadre, SR ;
Ghermani, NE .
THEORETICAL CHEMISTRY ACCOUNTS, 2004, 111 (2-6) :255-263
[5]   Ab initio quality one-electron properties of large molecules: Development and testing of molecular tailoring approach [J].
Babu, K ;
Gadre, SR .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (04) :484-495
[6]   Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields [J].
Beachy, MD ;
Chasman, D ;
Murphy, RB ;
Halgren, TA ;
Friesner, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (25) :5908-5920
[7]   Single-walled BN nanostructures [J].
Bengu, E ;
Marks, LD .
PHYSICAL REVIEW LETTERS, 2001, 86 (11) :2385-2387
[8]   ADDITIVITY RULES FOR ESTIMATION OF THERMOCHEMICAL PROPERTIES [J].
BENSON, SW ;
CRUICKSHANK, FR ;
GOLDEN, DM ;
HAUGEN, GR ;
ONEAL, HE ;
RODGERS, AS ;
SHAW, R ;
WALSH, R .
CHEMICAL REVIEWS, 1969, 69 (03) :279-+
[9]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[10]   A linear scaling method for Hartree-Fock exchange calculations of large molecules [J].
Burant, JC ;
Scuseria, GE ;
Frisch, MJ .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (19) :8969-8972