Biomechanical and topographic considerations for autologous osteochondral grafting in the knee

被引:96
作者
Ahmad, CS [1 ]
Cohen, ZA [1 ]
Levine, WN [1 ]
Ateshian, GA [1 ]
Mow, VC [1 ]
机构
[1] Columbia Univ, Dept Mech Engn & Orthopaed Surg, Orthopaed Res Lab, New York, NY USA
关键词
D O I
10.1177/03635465010290021401
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
This study characterizes the donor and recipient sites involved in osteochondral autograft surgery of the knee with respect to articular cartilage contact pressure, articular surface curvature, and cartilage thickness. Five cadaveric knees were tested in an open chain activity simulation and kinematic data were obtained at incremental knee flexion angles from 0 degrees to 110 degrees. Surface curvature, cartilage thickness, and contact pressure were determined using a stereophotogrammetry method. In all knees, the medial trochlea, intercondylar notch, and lateral trochlea demonstrated nonloadbearing regions. Donor sites from the distal-medial trochlea were totally nonloadbearing. For the intercondylar notch, lateral trochlea, and proximal-medial trochlea, however, the nonloadbearing areas were small, and typical donor sites in these areas partially encroached into adjacent loadbearing areas. The lateral trochlea (77.1 m(-1)) was more highly curved than the typical recipient sites of the central trochlea (23.3 m(-1)), medial femoral condyle (46.8 m(-1)), and lateral femoral condyles (42.9 m(-1)) (P < 0.05). Overall, the donor sites had similar cartilage thickness (average, 2.1 mm) when compared with the typical recipient sites (average, 2.5 mm). The lateral trochlea and medial trochlea curvatures were found to better match the recipient sites on the femoral condyles, while the intercondylar notch better matched the recipient sites of the central trochlea. The distal-medial trochlea was found to have the advantage of being nonloadbearing. Preoperative planning using the data presented will assist in more conforming, congruent grafts, thereby maximizing biomechanical function.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 28 条
[1]   Effects of patellar tendon adhesion to the anterior tibia on knee mechanics [J].
Ahmad, CS ;
Kwak, SD ;
Ateshian, GA ;
Warden, WH ;
Steadman, JR ;
Mow, VC .
AMERICAN JOURNAL OF SPORTS MEDICINE, 1998, 26 (05) :715-724
[2]  
ARMSTRONG CG, 1985, SPORTS MED KNEE, P70
[3]   A STEREOPHOTOGRAMMETRIC METHOD FOR DETERMINING IN-SITU CONTACT AREAS IN DIARTHROIDAL JOINTS, AND A COMPARISON WITH OTHER METHODS [J].
ATESHIAN, GA ;
KWAK, SD ;
SOSLOWSKY, LJ ;
MOW, VC .
JOURNAL OF BIOMECHANICS, 1994, 27 (01) :111-124
[4]   A B-SPLINE LEAST-SQUARES SURFACE-FITTING METHOD FOR ARTICULAR SURFACES OF DIARTHROIDAL JOINTS [J].
ATESHIAN, GA .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1993, 115 (04) :366-373
[5]   QUANTITATION OF ARTICULAR SURFACE-TOPOGRAPHY AND CARTILAGE THICKNESS IN KNEE JOINTS USING STEREOPHOTOGRAMMETRY [J].
ATESHIAN, GA ;
SOSLOWSKY, LJ ;
MOW, VC .
JOURNAL OF BIOMECHANICS, 1991, 24 (08) :761-776
[6]  
Blevins FT, 1998, ORTHOPEDICS, V21, P761
[7]  
Bobic V, 1996, Knee Surg Sports Traumatol Arthrosc, V3, P262, DOI 10.1007/BF01466630
[8]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895
[9]  
Caplan AI, 1997, CLIN ORTHOP RELAT R, P254
[10]   Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements [J].
Cohen, ZA ;
McCarthy, DM ;
Kwak, SD ;
Legrand, P ;
Fogarasi, F ;
Ciaccio, EJ ;
Ateshian, GA .
OSTEOARTHRITIS AND CARTILAGE, 1999, 7 (01) :95-109