A clustering-based differential evolution for global optimization

被引:115
作者
Cai, Zhihua [1 ]
Gong, Wenyin [1 ,2 ]
Ling, Charles X. [2 ]
Zhang, Harry [3 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Univ Western Ontario, Dept Comp Sci, London, ON N6A 5B7, Canada
[3] Univ New Brunswick, Sch Comp Sci, Fredericton, NB E3B 5A3, Canada
基金
国家高技术研究发展计划(863计划);
关键词
Differential evolution; k-means clustering; Hybridization; Global optimization; GENETIC ALGORITHM; OPPOSITION;
D O I
10.1016/j.asoc.2010.04.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hybridization with other different algorithms is an interesting direction for the improvement of differential evolution (DE). In this paper, a hybrid DE based on the one-step k-means clustering, called clustering-based DE (CDE), is presented for the unconstrained global optimization problems. The one-step k-means clustering acts as several multi-parent crossover operators to utilize the information of the population efficiently, and hence it can enhance the performance of DE. To validate the performance of our approach, 30 benchmark functions of a wide range of dimensions and diversity complexities are employed. Experimental results indicate that our approach is effective and efficient. Compared with other state-of-the-art DE approaches, our approach performs better, or at least comparably, in terms of the quality of the final solutions and the reduction of the number of fitness function evaluations (NFFEs). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1363 / 1379
页数:17
相关论文
共 50 条
[1]   A multipopulation cultural algorithm using fuzzy clustering [J].
Alami, J. ;
El Imrani, A. ;
Bouroumi, A. .
APPLIED SOFT COMPUTING, 2007, 7 (02) :506-519
[2]   Modenar: Multi-objective differential evolution algorithm for mining numeric association rules [J].
Alatas, Bilal ;
Akin, Erhan ;
Karci, Ali .
APPLIED SOFT COMPUTING, 2008, 8 (01) :646-656
[3]  
[Anonymous], 2002, ADV INTELL SYST FUZZ
[4]  
[Anonymous], 2005, PROBLEM DEFINITIONS
[5]  
[Anonymous], 2008, ADV DIFFERENTIAL EVO
[6]  
Back T., 1996, EVOLUTIONARY ALGORIT, DOI DOI 10.1093/OSO/9780195099713.001.0001
[7]   Population size reduction for the differential evolution algorithm [J].
Brest, Janez ;
Maucec, Mirjam Sepesy .
APPLIED INTELLIGENCE, 2008, 29 (03) :228-247
[8]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[9]   A hybrid evolutionary programming method for circuit optimization [J].
Damavandi, N ;
Safavi-Naeini, S .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (05) :902-910
[10]   Automatic clustering using an improved differential evolution algorithm [J].
Das, Swagatam ;
Abraham, Ajith ;
Konar, Amit .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2008, 38 (01) :218-237