Nuclear magnetic resonance (NMR) spectroscopy of lipid A is limited by rapid transversal relaxation and subsequent line broadening caused by the tendency of these glycolipids to form aggregates in all solvents. To examine the influence of solvents on NMR spectra, hexa-acyl lipid A from Escherichia coli F515 was investigated. Line widths at half height, longitudinal relaxation times, and transversal relaxation times were measured in different solvents, lipid A concentrations, and temperatures. Chloroform-d, dioxane-d(8), and pyridine-d(5) each mixed with 25% methanol-d(4) as well as sole DMSO-d(6) and 0.1 M triethylamine-d(15) (TEA-d(15)) in D2O caused good spectral resolutions and allowed structure analysis. ROESY and HMBC spectra gave an insight into the influence of transversal relaxation times on spectral quality in two-dimensional spectra. Solvent depending differences of interglycosidic NOEs indicated dissimilarities of the conformations in the interglycosidic linkage and allowed conclusions about the lipid A solution state. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.