Thermal barrier coatings made by the solution precursor plasma spray process

被引:125
作者
Gell, Maurice [1 ]
Jordan, Eric H. [1 ]
Teicholz, Matthew [1 ]
Cetegen, Baki M. [1 ]
Padture, Nitin P. [2 ]
Xie, Liangde [3 ]
Chen, Dianying [1 ]
Ma, Xinqing [4 ]
Roth, Jeffrey [4 ]
机构
[1] Univ Connecticut, Inst Mat Sci, Dept Mat Sci & Engn, Storrs, CT 06269 USA
[2] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[3] Chromalloy Gas Turbine Corp, San Antonio, TX USA
[4] Inframat Corp, Farmington, CT USA
关键词
plasma spray; solution precursor; solution precursor plasma spray; thermal barrier coatings;
D O I
10.1007/s11666-007-9141-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The solution precursor plasma spray (SPPS) process is a relatively new and flexible thermal spray process that can produce a wide variety of novel materials, including some with superior properties. The SPPS process involves injecting atomized droplets of a precursor solution into the plasma. The properties of resultant deposits depend on the time-temperature history of the droplets in the plasma, ranging from ultra-fine splats to unmelted crystalline particles to unpyrolized particles. By controlling the volume fraction of these three different constituents, a variety of coatings can be produced, all with a nanograin size. In this article, we will be reviewing research related to thermal barrier coatings, emphasizing the processing conditions necessary to obtain a range of microstructures and associated properties. The SPPS process produces a unique strain-tolerant, low-thermal conductivity microstructure consisting of (i) three-dimensional micrometer and nanometer pores, (ii) through-coating thickness (vertical) cracks, (iii) ultra-fine splats, and (iv) inter-pass boundaries. Both thin (0.12 mm) and thick (4 mm) coatings have been fabricated. The volume fraction of porosity can be varied from 10% to 40% while retaining the characteristic microstructure of vertical cracks and ultra-fine splats. The mechanism of vertical crack formation will be described.
引用
收藏
页码:124 / 135
页数:12
相关论文
共 43 条
[1]   Modeling of thermo-physical processes in liquid ceramic precursor droplets injected into a plasma jet [J].
Basu, Saptarshi ;
Cetegen, Baki M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (17-18) :3278-3290
[2]   Mechanisms of ceramic coating deposition in solution-precursor plasma spray [J].
Bhatia, T ;
Ozturk, A ;
Xie, LD ;
Jordan, EH ;
Cetegen, BM ;
Gell, M ;
Ma, XQ ;
Padture, NP .
JOURNAL OF MATERIALS RESEARCH, 2002, 17 (09) :2363-2372
[3]  
Bouyer E, 1997, PROGRESS IN PLASMA PROCESSING OF MATERIALS 1997, P735
[4]   Thermal plasma chemical vapor deposition of Si-based ceramic coatings from liquid precursors [J].
Bouyer, E ;
Schiller, G ;
Müller, M ;
Henne, RH .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2001, 21 (04) :523-546
[5]   CHEMICAL SPRAY DEPOSITION PROCESS FOR INORGANIC FILMS [J].
CHAMBERLIN, RR ;
SKARMAN, JS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1966, 113 (01) :86-+
[6]  
CHEN D, 2007, UNPUB
[7]   Mechanisms controlling the durability of thermal barrier coatings [J].
Evans, AG ;
Mumm, DR ;
Hutchinson, JW ;
Meier, GH ;
Pettit, FS .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (05) :505-553
[8]   Understanding of suspension DC plasma spraying of finely structured coatings for SOFC [J].
Fauchais, P ;
Rat, V ;
Delbos, U ;
Coudert, JF ;
Chartier, T ;
Bianchi, L .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (02) :920-930
[9]   Developments in direct current plasma spraying [J].
Fauchais, Pierre ;
Montavon, Ghislain ;
Vardelle, Michel ;
Cedelle, Julie .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (05) :1908-1921
[10]   Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings [J].
Gell, M ;
Xie, LD ;
Jordan, EH ;
Padture, NP .
SURFACE & COATINGS TECHNOLOGY, 2004, 188 :101-106