Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content -: I.: Relations between active site structure and catalytic performance

被引:290
作者
Schwidder, M
Kumar, MS
Klementiev, K
Pohl, MM
Brückner, A
Grünert, W
机构
[1] Ruhr Univ Bochum, Lehrstuhl Tech Chem, D-44780 Bochum, Germany
[2] Inst Angew Chem Berlin Adlershof EV, D-12489 Berlin, Germany
关键词
DeNo(x); Fe-ZSM-5; isobutane; ammonia; EXAFS; UV-vis spectroscopy; EPR spectroscopy; active sites;
D O I
10.1016/j.jcat.2005.01.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe-ZSM-5 catalysts (0.2-1.2 wt% Fe) were prepared by an exchanging of Na-ZSM-5 with Fe2+ ions formed by the dissolution of iron in acidic medium, and characterized by UV-vis, EPR, and X-ray absorption spectroscopy and by TPR and TEM. Their catalytic properties were investigated for the selective catalytic reduction (SCR) of NO by isobutane (2000 ppm NO, 2000 ppm isobutane, 3% O-2, 42,000 h(-1)) or by NH3 (1000 ppm NO, 1000 ppm NH3, 1% O-2, 750,000 h(-1)). The catalysts were highly active in both reactions, competing favorably with catalysts prepared by chemical vapor deposition of FeCl3 into H-ZSM-5. The spectroscopic studies showed that at Fe contents less than or equal to 0.3 wt%, ca. 95% of the iron was present in mononuclear sites of different coordination. At higher Fe contents, small oligomeric clusters coexisted with mononuclear sites, and at 1.2% Fe, large, poorly ordered Fe oxide aggregates were also detected. By correlation of the activities with the concentration of Fe sites as determined from UV-vis spectra, it was established that mononuclear Fe ions are active sites for both SCR reactions, but oligomers contribute as well. At the same time, oligomers (and aggregate surfaces) are more active in unselective oxidation of the reductant, which limits the temperature window of selective NO reduction. This unselective attack by clustered species occurs at low temperatures with isobutane; hence the best performance was found for a catalyst of low Fe content (0.3 wt%), which is at variance with previous optimization strategies. With NH3, the unselective attack occurs at a much higher temperature; hence the best catalysts for NH3-SCR are those with the highest exposure of Fe sites. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:314 / 330
页数:17
相关论文
共 50 条
[1]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[2]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[3]   Reactivity of binuclear Fe complexes in over-exchanged Fe/ZSM5, studied by in situ XAFS spectroscopy - 2. Selective catalytic reduction of NO with isobutane [J].
Battiston, AA ;
Bitter, JH ;
Koningsberger, DC .
JOURNAL OF CATALYSIS, 2003, 218 (01) :163-177
[4]   Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3 [J].
Battiston, AA ;
Bitter, JH ;
de Groot, FMF ;
Overweg, AR ;
Stephan, O ;
van Bokhoven, JA ;
Kooyman, PJ ;
van der Spek, C ;
Vankó, G ;
Koningsberger, DC .
JOURNAL OF CATALYSIS, 2003, 213 (02) :251-271
[5]   Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles [J].
Berger, R ;
Bissey, JC ;
Kliava, J ;
Daubric, H ;
Estournès, C .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 234 (03) :535-544
[6]   General introduction:: origins and objectives of the study [J].
Bond, GC ;
Forzatti, P ;
Védrine, JC .
CATALYSIS TODAY, 2000, 56 (04) :329-332
[7]   Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods [J].
Bordiga, S ;
Buzzoni, R ;
Geobaldo, F ;
Lamberti, C ;
Giamello, E ;
Zecchina, A ;
Leofanti, G ;
Petrini, G ;
Tozzola, G ;
Vlaic, G .
JOURNAL OF CATALYSIS, 1996, 158 (02) :486-501
[8]   Fe-Ce-ZSM-5 a new catalyst of outstanding properties in the selective catalytic reduction of NO with NH3 [J].
Carja, G ;
Delahay, G ;
Signorile, C ;
Coq, B .
CHEMICAL COMMUNICATIONS, 2004, (12) :1404-1405
[9]   Promoted Fe/ZSM-5 catalysts prepared by sublimation:: de-NOx activity and durability in H2O-rich streams [J].
Chen, HY ;
Sachtler, WMH .
CATALYSIS LETTERS, 1998, 50 (3-4) :125-130
[10]   Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor [J].
Chen, HY ;
Sachtler, WMH .
CATALYSIS TODAY, 1998, 42 (1-2) :73-83