BARYCENTERS IN THE WASSERSTEIN SPACE

被引:481
作者
Agueh, Martial [1 ]
Carlier, Guillaume [2 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
基金
加拿大自然科学与工程研究理事会;
关键词
optimal transport; Wasserstein space; convexity; duality; MAPS;
D O I
10.1137/100805741
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a notion of barycenter in the Wasserstein space which generalizes McCann's interpolation to the case of more than two measures. We provide existence, uniqueness, characterizations, and regularity of the barycenter and relate it to the multimarginal optimal transport problem considered by Gangbo and Swiech in [Comm. Pure Appl. Math., 51 (1998), pp. 23-45]. We also consider some examples and, in particular, rigorously solve the Gaussian case. We finally discuss convexity of functionals in the Wasserstein space.
引用
收藏
页码:904 / 924
页数:21
相关论文
共 16 条
[11]   ON A GENERALIZATION OF CYCLIC MONOTONICITY AND DISTANCES AMONG RANDOM VECTORS [J].
KNOTT, M ;
SMITH, CS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 199 :363-371
[12]   A convexity principle for interacting gases [J].
McCann, RJ .
ADVANCES IN MATHEMATICS, 1997, 128 (01) :153-179
[13]   Existence and uniqueness of monotone measure-preserving maps [J].
McCann, RJ .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) :309-323
[14]  
OHTA S, 2010, BARYCENTERS ALEXANDR
[15]   On the n-coupling problem [J].
Rüschendorf, L ;
Uckelmann, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 81 (02) :242-258
[16]  
STURM K.-T., 2003, HEAT KERNELS ANAL MA, V338, P357, DOI DOI 10.1090/CONM/338/06080