Peroxiredoxins in Plants and Cyanobacteria

被引:300
作者
Dietz, Karl-Josef [1 ]
机构
[1] Univ Bielefeld, Dept Biochem & Physiol Plants, D-33501 Bielefeld, Germany
关键词
CHLOROPLAST 2-CYS PEROXIREDOXIN; ACTIVATED PROTEIN-KINASE; S-NITROSYLATED PROTEINS; ARABIDOPSIS-THALIANA; OXIDATIVE STRESS; II PEROXIREDOXIN; REDOX-REGULATION; GENE-EXPRESSION; 1-CYS PEROXIREDOXIN; NITRIC-OXIDE;
D O I
10.1089/ars.2010.3657
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H2O2, alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species-and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants. Antioxid. Redox Signal. 15, 1129-1159.
引用
收藏
页码:1129 / 1159
页数:31
相关论文
共 187 条
[1]   TRANSCRIPTS ENCODING AN OLEOSIN AND A DORMANCY-RELATED PROTEIN ARE PRESENT IN BOTH THE ALEURONE LAYER AND THE EMBRYO OF DEVELOPING BARLEY (HORDEUM-VULGARE L) SEEDS [J].
AALEN, RB ;
OPSAHLFERSTAD, HG ;
LINNESTAD, C ;
OLSEN, OA .
PLANT JOURNAL, 1994, 5 (03) :385-396
[2]   Peroxiredoxin-linked detoxification of hydroperoxides in Toxoplasma gondii [J].
Akerman, SE ;
Müller, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (01) :564-570
[3]   ROS in biotic interactions [J].
Angel Torres, Miguel .
PHYSIOLOGIA PLANTARUM, 2010, 138 (04) :414-429
[4]   ATP-dependent modulation and autophosphorylation of rapeseed 2-Cys peroxiredoxin [J].
Aran, Martin ;
Caporaletti, Daniel ;
Senn, Alejandro M. ;
de Inon, Maria T. Tellez ;
Girotti, Maria R. ;
Llera, Andrea S. ;
Wolosiuk, Ricardo A. .
FEBS JOURNAL, 2008, 275 (07) :1450-1463
[5]   Nitric oxide as a bioactive signalling molecule in plant stress responses [J].
Arasimowicz, Magdalena ;
Floryszak-Wieczorek, Jolanta .
PLANT SCIENCE, 2007, 172 (05) :876-887
[6]   Plastidial Thioredoxin z Interacts with Two Fructokinase-Like Proteins in a Thiol-Dependent Manner: Evidence for an Essential Role in Chloroplast Development in Arabidopsis and Nicotiana benthamiana [J].
Arsova, Borjana ;
Hoja, Ursula ;
Wimmelbacher, Matthias ;
Greiner, Eva ;
Ustun, Suayib ;
Melzer, Michael ;
Petersen, Kerstin ;
Lein, Wolfgang ;
Boernke, Frederik .
PLANT CELL, 2010, 22 (05) :1498-1515
[7]   Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism [J].
Baier, M ;
Noctor, G ;
Foyer, CH ;
Dietz, KJ .
PLANT PHYSIOLOGY, 2000, 124 (02) :823-832
[8]   Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases [J].
Baier, M ;
Dietz, KJ .
PLANT MOLECULAR BIOLOGY, 1996, 31 (03) :553-564
[9]   Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis. Evidence from transgenic Arabidopsis [J].
Baier, M ;
Dietz, KJ .
PLANT PHYSIOLOGY, 1999, 119 (04) :1407-1414
[10]   The acceptor availability at photosystem I and ABA control nuclear expression of 2-cys peroxiredoxin-α in Arabidopsis thaliana [J].
Baier, M ;
Ströher, E ;
Dietz, KJ .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (08) :997-1006