Strategic targets of essential host-pathogen interactions

被引:25
作者
Blasi, F [1 ]
Tarsia, P [1 ]
Aliberti, S [1 ]
机构
[1] Univ Milan, IRCCS Osped Maggiore Milano, Inst Resp Dis, Milan, Italy
关键词
antimicrobial peptides; innate immunity; surfactant proteins; toll-like receptors;
D O I
10.1159/000083394
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
This review summarizes the present concepts regarding the biological processes that mediate intrinsic and innate host defense against microbial invasion of the lung. Innate immunity is the first line of defense of the higher organisms towards invading pathogens. It accomplishes a wide variety of activities including recognition and effector functions. The innate responses use phagocytic cells ( macrophages, monocytes, and neutrophils), cells that release inflammatory mediators ( basophils, mast cells, and eosinophils), and natural killer cells. The molecular component of innate responses includes complement, acute-phase proteins, and cytokines. Recognition of pathogen-associated molecular patterns is mediated by the pathogen receptors of the innate immune system, among these molecules toll-like receptors have emerged as fundamental components in the innate immune responses to infection, and a link between innate and adaptive immunity. Additional protection comes from polypeptide mediators of the innate host defense, such as the defensins and other antibiotic peptides. In view of the considerable burden in terms of mortality and morbidity that severe infections still pose worldwide, a better understanding of the biological basis of host-pathogen interactions opens stimulating future treatment perspectives. Copyright (C) 2005 S. Karger AG, Basel.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 139 条
[1]  
Aarbiou J, 2002, J LEUKOCYTE BIOL, V72, P167
[2]   Cutting edge: Different toll-like receptor agonists instruct dendritic cells to induce distinct th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-fos [J].
Agrawal, S ;
Agrawal, A ;
Doughty, B ;
Gerwitz, A ;
Blenis, J ;
Van Dyke, T ;
Pulendran, B .
JOURNAL OF IMMUNOLOGY, 2003, 171 (10) :4984-4989
[3]   Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition [J].
Akashi, S ;
Nagai, Y ;
Ogata, H ;
Oikawa, M ;
Fukase, K ;
Kusumoto, S ;
Kawasaki, K ;
Nishijima, M ;
Hayashi, S ;
Kimoto, M ;
Miyake, K .
INTERNATIONAL IMMUNOLOGY, 2001, 13 (12) :1595-1599
[4]   Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J].
Alexopoulou, L ;
Holt, AC ;
Medzhitov, R ;
Flavell, RA .
NATURE, 2001, 413 (6857) :732-738
[5]   Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2 [J].
Aliprantis, AO ;
Yang, RB ;
Mark, MR ;
Suggett, S ;
Devaux, B ;
Radolf, JD ;
Klimpel, GR ;
Godowski, P ;
Zychlinsky, A .
SCIENCE, 1999, 285 (5428) :736-739
[6]  
ALTOCHINA EN, 2001, J LAB CLIN MED, V137, P429
[7]   ESTABLISHMENT OF DORSAL-VENTRAL POLARITY IN THE DROSOPHILA EMBRYO - GENETIC-STUDIES ON THE ROLE OF THE TOLL GENE-PRODUCT [J].
ANDERSON, KV ;
JURGENS, G ;
NUSSLEINVOLHARD, C .
CELL, 1985, 42 (03) :779-789
[8]   Expansion of the BPI family by duplication on human chromosome 20:: characterization of the RY gene cluster in 20q11.21 encoding olfactory transporters/antimicrobial-like peptides [J].
Andrault, JB ;
Gaillard, I ;
Giorgi, D ;
Rouquier, S .
GENOMICS, 2003, 82 (02) :172-184
[9]   Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model [J].
Bals, R ;
Weiner, DJ ;
Meegalla, RL ;
Wilson, JM .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (08) :1113-1117
[10]   The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface [J].
Bals, R ;
Wang, XR ;
Zasloff, M ;
Wilson, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) :9541-9546