Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents

被引:378
作者
Tromsdorf, Ulrich I.
Bigall, Nadja C.
Kaul, Michael G.
Bruns, Oliver T.
Nikolic, Marija S.
Mollwitz, Birgit
Sperling, Ralph A.
Reimer, Rudolph
Hohenberg, Heinz
Parak, Wolfgang J.
Forster, Stephan
Beisiegel, Ulrike
Adam, Gerhard
Weller, Horst
机构
[1] Univ Hamburg, Inst Phys Chem, D-20146 Hamburg, Germany
[2] Univ Hamburg, Med Ctr, Dept Diagnost Intervent Radiol, D-20246 Hamburg, Germany
[3] Univ Hamburg, Med Ctr, Dept Bioquim & Biol Mol 2, D-20246 Hamburg, Germany
[4] Univ Munich, Ctr Nanosci, D-80799 Munich, Germany
[5] Heinrich Pette Inst Expt Virol & Immunol, Dept Elect Microscopy & Micro Technol, D-20251 Hamburg, Germany
关键词
D O I
10.1021/nl071099b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Superparamagnetic MnFe2O4 nanocrystals of different sizes were synthesized in high-boiling ether solvent and transferred into water using three different approaches. First, we applied a ligand exchange in order to form a water soluble polymer shell. Second, the particles were embedded into an amphiphilic polymer shell. Third, the nanoparticles were embedded into large micelles formed by lipids. Although all approaches lead to effective negative contrast enhancement, we observed significant differences concerning the magnitude of this effect. The transverse relaxivity, in particular r(2)*, is greatly higher for the micellar system compared to the polymer-coated particles using same-sized nanoparticles. We also observed an increase in transverse relaxivities with increasing particle size for the polymer-coated nanocrystals. The results are qualitatively compared with theoretical models describing the dependence of relaxivity on the size of magnetic spheres.
引用
收藏
页码:2422 / 2427
页数:6
相关论文
共 21 条
[1]   Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes [J].
Ai, H ;
Flask, C ;
Weinberg, B ;
Shuai, X ;
Pagel, MD ;
Farrell, D ;
Duerk, J ;
Gao, JM .
ADVANCED MATERIALS, 2005, 17 (16) :1949-+
[2]   Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging [J].
Berret, JF ;
Schonbeck, N ;
Gazeau, F ;
El Kharrat, D ;
Sandre, O ;
Vacher, A ;
Airiau, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1755-1761
[3]   Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging [J].
Bomatí-Miguel, O ;
Morales, MP ;
Tartaj, P ;
Ruiz-Cabello, J ;
Bonville, P ;
Santos, M ;
Zhao, XQ ;
Veintemillas-Verdaguer, S .
BIOMATERIALS, 2005, 26 (28) :5695-5703
[4]   Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells [J].
Bowen, CV ;
Zhang, XW ;
Saab, G ;
Gareau, PJ ;
Rutt, BK .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) :52-61
[5]   On T2-shortening by weakly magnetized particles:: The chemical exchange model [J].
Brooks, RA ;
Moiny, F ;
Gillis, P .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (06) :1014-1020
[6]   On T2-shortening by strongly magnetized spheres:: A partial refocusing model [J].
Gillis, P ;
Moiny, F ;
Brooks, RA .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (02) :257-263
[7]   Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia [J].
Gonzales, M ;
Krishnan, KM .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :265-270
[8]   Synthesis, properties, and applications of iron nanoparticles [J].
Huber, DL .
SMALL, 2005, 1 (05) :482-501
[9]   In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals [J].
Huh, YM ;
Jun, YW ;
Song, HT ;
Kim, S ;
Choi, JS ;
Lee, JH ;
Yoon, S ;
Kim, KS ;
Shin, JS ;
Suh, JS ;
Cheon, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (35) :12387-12391
[10]   Magnetic fluid hyperthermia (MFH):: Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J].
Jordan, A ;
Scholz, R ;
Wust, P ;
Fähling, H ;
Felix, R .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 201 :413-419