Identification of Genes and Networks Driving Cardiovascular and Metabolic Phenotypes in a Mouse F2 Intercross

被引:35
作者
Derry, Jonathan M. J. [1 ]
Zhong, Hua [1 ]
Molony, Cliona [1 ]
MacNeil, Doug [2 ]
Guhathakurta, Debraj [1 ]
Zhang, Bin [1 ]
Mudgett, John [2 ]
Small, Kersten [2 ]
El Fertak, Lahcen [3 ]
Guimond, Alain [3 ]
Selloum, Mohammed [3 ]
Zhao, Wenqing [2 ]
Champy, Marie France [3 ]
Monassier, Laurent [3 ]
Vogt, Tom [2 ]
Cully, Doris [2 ]
Kasarskis, Andrew [1 ]
Schadt, Eric E. [1 ]
机构
[1] Rosetta Inpharmat LLC, Seattle, WA USA
[2] Merck & Co Inc, Basic Res, Rahway, NJ 07065 USA
[3] Inst Clin Souris, Illkirch Graffenstaden, France
来源
PLOS ONE | 2010年 / 5卷 / 12期
关键词
QUANTITATIVE TRAIT LOCI; BLOOD-PRESSURE LOCI; BODY-WEIGHT; FTO GENE; NERVOUS-SYSTEM; EXPRESSION; SUSCEPTIBILITY; MICE; QTL; REGULATOR;
D O I
10.1371/journal.pone.0014319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To identify the genes and pathways that underlie cardiovascular and metabolic phenotypes we performed an integrated analysis of a mouse C57BL/6J x A/J F-2 (B6AF2) cross by relating genome-wide gene expression data from adipose, kidney, and liver tissues to physiological endpoints measured in the population. We have identified a large number of trait QTLs including loci driving variation in cardiac function on chromosomes 2 and 6 and a hotspot for adiposity, energy metabolism, and glucose traits on chromosome 8. Integration of adipose gene expression data identified a core set of genes that drive the chromosome 8 adiposity QTL. This chromosome 8 trans eQTL signature contains genes associated with mitochondrial function and oxidative phosphorylation and maps to a subnetwork with conserved function in humans that was previously implicated in human obesity. In addition, human eSNPs corresponding to orthologous genes from the signature show enrichment for association to type II diabetes in the DIAGRAM cohort, supporting the idea that the chromosome 8 locus perturbs a molecular network that in humans senses variations in DNA and in turn affects metabolic disease risk. We functionally validate predictions from this approach by demonstrating metabolic phenotypes in knockout mice for three genes from the trans eQTL signature, Akr1b8, Emr1, and Rgs2. In addition we show that the transcriptional signatures for knockout of two of these genes, Akr1b8 and Rgs2, map to the F2 network modules associated with the chromosome 8 trans eQTL signature and that these modules are in turn very significantly correlated with adiposity in the F2 population. Overall this study demonstrates how integrating gene expression data with QTL analysis in a network-based framework can aid in the elucidation of the molecular drivers of disease that can be translated from mice to humans.
引用
收藏
页数:14
相关论文
共 66 条
[1]   R/qtl: QTL mapping in experimental crosses [J].
Broman, KW ;
Wu, H ;
Sen, S ;
Churchill, GA .
BIOINFORMATICS, 2003, 19 (07) :889-890
[2]   Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics' [J].
Bystrykh, L ;
Weersing, E ;
Dontje, B ;
Sutton, S ;
Pletcher, MT ;
Wiltshire, T ;
Su, AI ;
Vellenga, E ;
Wang, JT ;
Manly, KF ;
Lu, L ;
Chesler, EJ ;
Alberts, R ;
Jansen, RC ;
Williams, RW ;
Cooke, MP ;
de Haan, G .
NATURE GENETICS, 2005, 37 (03) :225-232
[3]   Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels [J].
Cervino, AC ;
Li, GY ;
Edwards, S ;
Zhu, J ;
Laurie, C ;
Tokiwa, G ;
Lum, PY ;
Wang, S ;
Castellini, LW ;
Lusis, AJ ;
Carlson, S ;
Sachs, AB ;
Schadt, EE .
GENOMICS, 2005, 86 (05) :505-517
[4]   Variations in DNA elucidate molecular networks that cause disease [J].
Chen, Yanqing ;
Zhu, Jun ;
Lum, Pek Yee ;
Yang, Xia ;
Pinto, Shirly ;
MacNeil, Douglas J. ;
Zhang, Chunsheng ;
Lamb, John ;
Edwards, Stephen ;
Sieberts, Solveig K. ;
Leonardson, Amy ;
Castellini, Lawrence W. ;
Wang, Susanna ;
Champy, Marie-France ;
Zhang, Bin ;
Emilsson, Valur ;
Doss, Sudheer ;
Ghazalpour, Anatole ;
Horvath, Steve ;
Drake, Thomas A. ;
Lusis, Aldons J. ;
Schadt, Eric E. .
NATURE, 2008, 452 (7186) :429-435
[5]   Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function [J].
Chesler, EJ ;
Lu, L ;
Shou, SM ;
Qu, YH ;
Gu, J ;
Wang, JT ;
Hsu, HC ;
Mountz, JD ;
Baldwin, NE ;
Langston, MA ;
Threadgill, DW ;
Manly, KF ;
Williams, RW .
NATURE GENETICS, 2005, 37 (03) :233-242
[6]   Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure [J].
Chobanian, AV ;
Bakris, GL ;
Black, HR ;
Cushman, WC ;
Green, LA ;
Izzo, JL ;
Jones, DW ;
Materson, BJ ;
Oparil, S ;
Wright, JT ;
Roccella, EJ .
HYPERTENSION, 2003, 42 (06) :1206-1252
[7]   The genetic dissection of essential hypertension [J].
Cowley, Allen W., Jr. .
NATURE REVIEWS GENETICS, 2006, 7 (11) :829-840
[8]   Variation in FTO contributes to childhood obesity and severe adult obesity [J].
Dina, Christian ;
Meyre, David ;
Gallina, Sophie ;
Durand, Emmanuelle ;
Koerner, Antje ;
Jacobson, Peter ;
Carlsson, Lena M. S. ;
Kiess, Wieland ;
Vatin, Vincent ;
Lecoeur, Cecile ;
Delplanque, Jerome ;
Vaillant, Emmanuel ;
Pattou, Francois ;
Ruiz, Juan ;
Weill, Jacques ;
Levy-Marchal, Claire ;
Horber, Fritz ;
Potoczna, Natascha ;
Hercberg, Serge ;
Le Stunff, Catherine ;
Bougneres, Pierre ;
Kovacs, Peter ;
Marre, Michel ;
Balkau, Beverley ;
Cauchi, Stephane ;
Chevre, Jean-Claude ;
Froguel, Philippe .
NATURE GENETICS, 2007, 39 (06) :724-726
[9]   Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice [J].
DiPetrillo, K ;
Tsaih, SW ;
Sheehan, S ;
Johns, C ;
Kelmenson, P ;
Gavras, H ;
Churchill, GA ;
Paigen, B .
PHYSIOLOGICAL GENOMICS, 2004, 17 (02) :215-220
[10]   The metabolic syndrome [J].
Eckel, RH ;
Grundy, SM ;
Zimmet, PZ .
LANCET, 2005, 365 (9468) :1415-1428