The Monte-Carlo method for filtering with discrete-time observations

被引:75
作者
Del Moral, P
Jacod, J
Protter, P
机构
[1] Univ Toulouse 3, LSP, CNRS, UMR C5583, F-31062 Toulouse, France
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, CNRS, UMR 7599, F-75252 Paris, France
[3] Cornell Univ, ORIE, Ithaca, NY 14853 USA
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[5] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词
filtering; signal detection; Monte Carlo;
D O I
10.1007/PL00008786
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
[No abstract available]
引用
收藏
页码:346 / 368
页数:23
相关论文
共 6 条
[1]   Exponential stability for nonlinear filtering [J].
Atar, R ;
Zeitouni, O .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (06) :697-725
[2]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[3]  
Bally V., 1996, Monte Carlo Methods Appl, V2, P93, DOI DOI 10.1515/MCMA.1996.2.2.93
[4]   Exponential stability in discrete-time filtering for non-ergodic signals [J].
Budhiraja, A ;
Ocone, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 82 (02) :245-257
[5]  
KURTZ T. G., 1991, STOCHASTIC ANAL, P331
[6]  
Ledoux M., 1991, Probability in Banach Spaces: Isoperimetry and Processes, V23