Concise review: Wharton's jelly-derived cells are a primitive stromal cell population

被引:582
作者
Troyer, Deryl L. [1 ]
Weiss, Mark L. [1 ]
机构
[1] Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA
关键词
mesenchymal stromal cells; perinatal cells; discarded tissue; stromal cells;
D O I
10.1634/stemcells.2007-0439
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Here, the literature was reviewed to evaluate whether a population of mesenchymal stromal cells derived from Wharton's jelly cells (WJCs) is a primitive stromal population. A clear case can be made for WJCs as a stromal population since they display the characteristics of MSCs as defined by the International Society for Cellular Therapy; for example, they grow as adherent cells with mesenchymal morphology, they are self-renewing, they express cell surface markers displayed by MSCs, and they may be differentiated into bone, cartilage, adipose, muscle, and neural cells. Like other stromal cells, WJCs support the expansion of other stem cells, such as hematopoietic stem cells, are well-tolerated by the immune system, and they have the ability to home to tumors. In contrast to bone marrow MSCs, WJCs have greater expansion capability, faster growth in vitro, and may synthesize different cytokines. WJCs are therapeutic in several different pre-clinical animal models of human disease such as neurodegenerative disease, cancer, heart disease, etc. The preclinical work suggests that the WJCs are therapeutic via trophic rescue and immune modulation. In summary, WJCs meet the definition of MSCs. Since WJCs expand faster and to a greater extent than adult-derived MSCs, these findings suggest that WJCs are a primitive stromal cell population with therapeutic potential. Further work is needed to determine whether WJCs engraft long-term and display self-renewal and multipotency in vivo and, as such, demonstrate whether Wharton's jelly cells are a true stem cell population.
引用
收藏
页码:591 / 599
页数:9
相关论文
共 78 条
[1]   Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas [J].
Aboody, KS ;
Brown, A ;
Rainov, NG ;
Bower, KA ;
Liu, SX ;
Yang, W ;
Small, JE ;
Herrlinger, U ;
Ourednik, V ;
Black, PM ;
Breakefield, XO ;
Snyder, EY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12846-12851
[2]   Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero [J].
Almeida-Porada, G ;
Flake, AW ;
Glimp, HA ;
Zanjani, ED .
EXPERIMENTAL HEMATOLOGY, 1999, 27 (10) :1569-1575
[3]   ENGRAFTMENT OF A CLONAL BONE-MARROW STROMAL CELL-LINE INVIVO STIMULATES HEMATOPOIETIC RECOVERY FROM TOTAL-BODY IRRADIATION [J].
ANKLESARIA, P ;
KASE, K ;
GLOWACKI, J ;
HOLLAND, CA ;
SAKAKEENY, MA ;
WRIGHT, JA ;
FITZGERALD, TJ ;
LEE, CY ;
GREENBERGER, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7681-7685
[4]   Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space [J].
Arnhold, S ;
Klein, H ;
Semkova, I ;
Addicks, K ;
Schraermeyer, U .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 (12) :4251-4255
[5]   A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar Chondrocytes for tissue engineering temporomandibular joint condylar cartilage [J].
Bailey, Mark M. ;
Wang, Limin ;
Bode, Claudia J. ;
Mitchell, Kathy E. ;
Detamore, Michael S. .
TISSUE ENGINEERING, 2007, 13 (08) :2003-2010
[6]   Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy [J].
Baksh, D ;
Song, L ;
Tuan, RS .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2004, 8 (03) :301-316
[7]   Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow [J].
Baksh, Dolores ;
Yao, Raphael ;
Tuan, Rocky S. .
STEM CELLS, 2007, 25 (06) :1384-1392
[8]   Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilinelage differentiation [J].
Battula, Venkata Lokesh ;
Bareiss, Petra M. ;
Treml, Sabrina ;
Conrad, Sabine ;
Albert, Ingrid ;
Hojak, Sigrid ;
Abele, Harald ;
Schewe, Bernhard ;
Just, Lothar ;
Skutella, Thomas ;
Buehring, Hans-Jorg .
DIFFERENTIATION, 2007, 75 (04) :279-291
[9]   Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood [J].
Bieback, K ;
Kern, S ;
Klüter, H ;
Eichler, H .
STEM CELLS, 2004, 22 (04) :625-634
[10]   Epigenetic programming of mesenchymal stem cells from human adipose tissue [J].
Boquest, Andrew C. ;
Noer, Agate ;
Collas, Philippe .
STEM CELL REVIEWS, 2006, 2 (04) :319-329