Efficient and robust fragments-based multiple kernels tracking

被引:28
作者
Fang, Jiangxiong [1 ]
Yang, Jie [1 ]
Liu, Huaxiang [2 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[2] Hunan Normal Univ, Changsha 410080, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple kernels tracking; Object tracking; Adaptive scale selection; Mean shift;
D O I
10.1016/j.aeue.2011.02.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Representing an object with multiple image fragments or patches for target tracking in a video has proved to be able to maintain the spatial information. The major challenges in visual tracking are effectiveness and robustness. In this paper, we propose an efficient and robust fragments-based multiple kernels tracking algorithm. Fusing the log-likelihood ratio image and morphological operation divides the object into some fragments, which can maintain the spatial information. By assigning each fragment to different weight, more robust target and candidate models are built. Applying adaptive scale selection and updating schema for the target model and the weighting factors of each fragment can improve tracking robustness. Upon these advantages, the novel tracking algorithm can provide more accurate performance and can be directly extended to a multiple object tracking system. (C) 2011 Elsevier GmbH. All rights reserved.
引用
收藏
页码:915 / 923
页数:9
相关论文
共 16 条
[1]  
Adam A., 2006, IEEE C COMPUTER VISI, V1, P798, DOI [DOI 10.1109/CVPR.2006.256, 10.1109/CVPR.2006.256]
[2]  
[Anonymous], 2005, P IEEE INT C IM PROC
[3]  
[Anonymous], 2004, Beyond the Kalman Filter: Particle Filters for Tracking Applications
[4]   Mean-Shift Object Tracking with Discrete and Real AdaBoost Techniques [J].
Baskoro, Hendro ;
Kim, Jun-Seong ;
Kim, Chang-Su .
ETRI JOURNAL, 2009, 31 (03) :282-291
[5]  
Collins RT, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P346
[6]  
Collins RT, 2003, PROC CVPR IEEE, P234
[7]   Kernel-based object tracking [J].
Comaniciu, D ;
Ramesh, V ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) :564-577
[8]   Efficient region tracking with parametric models of geometry and illumination [J].
Hager, GD ;
Belhumeur, PN .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (10) :1025-1039
[9]   CONDENSATION - Conditional density propagation for visual tracking [J].
Isard, M ;
Blake, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (01) :5-28
[10]  
Jeyakar J., 2007, IEEE INT C IMAGE PRO, P49