The initial conditions of star formation in the Ophiuchus main cloud:: Kinematics of the protocluster condensations

被引:175
作者
Andre, Ph. [1 ]
Belloche, A.
Motte, F.
Peretto, N.
机构
[1] CE Saclay, CEA, DSM DAPNIA, Serv Astrophys, F-91191 Gif Sur Yvette, France
[2] Univ Paris Diderot, CE Saclay, Lab AIM, CNRSMR,CEA DSM, Paris, France
[3] Max Planck Inst Radioastron, D-53121 Bonn, Germany
[4] Univ Manchester, Dept Phys & Astron, Manchester M60 1QD, Lancs, England
关键词
stars : formation; stars : circumstellar matter; ISM : clouds; ISM : structure; ISM : kinematics and dynamics; ISM : molecules;
D O I
10.1051/0004-6361:20077422
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The earliest phases of clustered star formation and the origin of the stellar initial mass function (IMF) are currently much debated. In one school of thought the IMF of embedded clusters is entirely determined by turbulent fragmentation at the prestellar stage of star formation, while in a major alternative view it results from dynamical interactions and competitive accretion at the protostellar stage. Aims. In an effort to discriminate between these two pictures for the origin of the IMF, we investigated the internal and relative motions of starless condensations and protostars previously detected by us in the dust continuum at 1.2 mm in the L1688 protocluster of the Ophiuchus molecular cloud complex. The starless condensations have a mass spectrum resembling the IMF and are therefore likely representative of the initial stages of star formation in the protocluster. Methods. We carried out detailed molecular line observations, including some N2H+(1-0) mapping, of the Ophiuchus protocluster condensations using the IRAM 30 m telescope. Results. We measured subsonic or at most transonic levels of internal turbulence within the condensations, implying virial masses which generally agree within a factor of similar to 2 with the masses derived from the 1.2 mm dust continuum. This supports the notion that most of the L1688 starless condensations are gravitationally bound and prestellar in nature. We detected the classical spectroscopic signature of infall motions in CS(2-1), CS(3-2), H2CO(2(12)-1(11)), and/or HCO+(3-2) toward six condensations, and obtained tentative infall signatures toward 10 other condensations. In addition, we measured a global one-dimensional velocity dispersion of less than 0.4 km s(-1) (or twice the sound speed) between condensations. The small relative velocity dispersion implies that, in general, the condensations do not have time to interact with one another before evolving into pre-main sequence objects. Conclusions. Our observations support the view that the IMF is partly determined by cloud fragmentation at the prestellar stage. Competitive accretion is unlikely to be the dominant mechanism at the protostellar stage in the Ophiuchus protocluster, but it may possibly govern the growth of starless, self-gravitating condensations initially produced by gravoturbulent fragmentation toward an IMF, Salpeter-like mass spectrum.
引用
收藏
页码:519 / 535
页数:17
相关论文
共 87 条
[41]   Infall models of class 0 protostars [J].
Jayawardhana, R ;
Hartmann, L ;
Calvet, N .
ASTROPHYSICAL JOURNAL, 2001, 548 (01) :310-317
[42]   Large-area mapping at 850 microns.: II.: Analysis of the clump distribution in the ρ Ophiuchi molecular cloud [J].
Johnstone, D ;
Wilson, CD ;
Moriarty-Schieven, G ;
Joncas, G ;
Smith, G ;
Gregersen, E ;
Fich, M .
ASTROPHYSICAL JOURNAL, 2000, 545 (01) :327-339
[43]   The initial conditions of isolated star formation -: VI.: SCUBA mappingof pre-stellar cores [J].
Kirk, JM ;
Ward-Thompson, D ;
André, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 360 (04) :1506-1526
[44]   Quiescent and coherent cores from gravoturbulent fragmentation [J].
Klessen, RS ;
Ballesteros-Paredes, J ;
Vázquez-Semadeni, E ;
Durán-Rojas, C .
ASTROPHYSICAL JOURNAL, 2005, 620 (02) :786-794
[45]   The formation of stellar clusters: Gaussian cloud conditions. I. [J].
Klessen, RS ;
Burkert, A .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2000, 128 (01) :287-319
[46]  
Kramer C, 1998, ASTRON ASTROPHYS, V329, P249
[47]   On the variation of the initial mass function [J].
Kroupa, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 322 (02) :231-246
[48]   The formation of stars by gravitational collapse rather than competitive accretion [J].
Krumholz, MR ;
McKee, CF ;
Klein, RI .
NATURE, 2005, 438 (7066) :332-334
[49]   Embedded clusters in molecular clouds [J].
Lada, CJ ;
Lada, EA .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 2003, 41 :57-115
[50]   Thermal physics, cloud geometry and the stellar initial mass function [J].
Larson, RB .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 359 (01) :211-222