Quantum quenches in extended systems

被引:478
作者
Calabrese, Pasquale
Cardy, John
机构
[1] Univ Pisa, Dipartimento Fis, Pisa, Italy
[2] Ist Nazl Fis Nucl, Pisa, Italy
[3] Univ Amsterdam, Inst Theoret Phys, NL-1018 XE Amsterdam, Netherlands
[4] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England
[5] Univ Oxford All Souls Coll, Oxford OX1 4AL, England
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2007年
基金
英国工程与自然科学研究理事会;
关键词
correlation functions; conformal field theory (theory); quantum phase transitions (theory);
D O I
10.1088/1742-5468/2007/06/P06008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study in general the time evolution of correlation functions in a extended quantum system after the quench of a parameter in the Hamiltonian. We show that correlation functions in d dimensions can be extracted using methods of boundary critical phenomena in d + 1 dimensions. For d = 1 this allows us to use the powerful tools of conformal field theory in the case of critical evolution. Several results are obtained in generic dimension in the Gaussian (mean field) approximation. These predictions are checked against the real time evolution of some solvable models that allow us also to understand which features are valid beyond the critical evolution. All our findings may be explained in terms of a picture generally valid, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate with a finite speed through the system. Furthermore we show that the long time results can be interpreted in terms of a generalized Gibbs ensemble. We discuss some open questions and possible future developments.
引用
收藏
页数:33
相关论文
共 73 条
[31]   Dynamics of a Tonks-Girardeau gas released from a hard-wall trap [J].
Del Campo, A. ;
Muga, J. G. .
EUROPHYSICS LETTERS, 2006, 74 (06) :965-971
[32]  
Diehl H.W., 1986, PHASE TRANSITIONS CR, V10
[33]   The theory of boundary critical phenomena [J].
Diehl, HW .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (30) :3503-3523
[34]   Dynamics of a quantum phase transition in the random Ising model: Logarithmic dependence of the defect density on the transition rate [J].
Dziarmaga, Jacek .
PHYSICAL REVIEW B, 2006, 74 (06)
[35]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[36]  
EISLER V, 2007, CONDMAT0703379
[37]   Real-time dynamics in spin-1/2 on chains with adaptive time-dependent density matrix renormalization group -: art. no. 036102 [J].
Gobert, D ;
Kollath, C ;
Schollwöck, U ;
Schütz, G .
PHYSICAL REVIEW E, 2005, 71 (03)
[38]   Collapse and revival of the matter wave field of a Bose-Einstein condensate [J].
Greiner, M ;
Mandel, O ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 419 (6902) :51-54
[39]  
GRITSEV V, 2007, CONDMAT0702343
[40]   Long-range correlations in the nonequilibrium quantum relaxation of a spin chain [J].
Iglói, F ;
Rieger, H .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3233-3236