Consistent application of maximum entropy to quantum Monte Carlo data

被引:11
作者
vonderLinden, W [1 ]
Preuss, R [1 ]
Hanke, W [1 ]
机构
[1] UNIV WURZBURG, INST THEORET PHYS, D-97074 WURZBURG, GERMANY
关键词
D O I
10.1088/0953-8984/8/21/013
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Bayesian probability theory along with the maximum entropy concept is widely used for inferential problems, particularly to infer dynamic properties of strongly correlated fermion systems from quantum Monte Carlo (QMC) imaginary time data. in current QMC applications, however, the error covariance of the QMC data is not treated consistently. Here we present a consistent Bayesian analysis of all the information provided by the QMC simulation. This approach allows us to infer reliable results with the least amount of computer time.
引用
收藏
页码:3881 / 3888
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 1992, Entropy Optimization Principle with Applications
[2]   BAYESIAN-ANALYSIS .2. SIGNAL-DETECTION AND MODEL SELECTION [J].
BRETTHORST, GL .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (03) :552-570
[3]  
BUCK B, 1990, MAXIMUM ENTROPY ACTI
[4]  
FRIEDEN BR, 1991, PROBABILITY STATISTI
[5]   QUANTUM MONTE-CARLO SIMULATIONS AND MAXIMUM-ENTROPY - DYNAMICS FROM IMAGINARY-TIME DATA [J].
GUBERNATIS, JE ;
JARRELL, M ;
SILVER, RN ;
SIVIA, DS .
PHYSICAL REVIEW B, 1991, 44 (12) :6011-6029
[6]  
GULL SF, 1989, FUND THEOR, V36, P53
[7]  
JARRELL M, 1995, UNPUB PHYS REP
[8]  
Jaynes E. T., 1983, Papers on Probability, Statistics and Statistical Physics
[9]  
O'Hagan A., 1994, KENDALLS ADV THEOR B, V2B
[10]   SPECTRAL DENSITIES OF THE SYMMETRICAL ANDERSON MODEL [J].
SILVER, RN ;
GUBERNATIS, JE ;
SIVIA, DS ;
JARRELL, M .
PHYSICAL REVIEW LETTERS, 1990, 65 (04) :496-499