Ceramide accumulates in neurons during various disorders associated with acute or chronic neurodegeneration. In these studies, we investigated the mechanisms of ceramide-induced apoptosis in primary cortical neurons using exogenous C-2 ceramide as well as inducing endogenous ceramide accumulation using inhibitors of glucosylceramide synthetase. Ceramide induced the translocation of certain, but not all, pro-apoptotic mitochondrial proteins: cytochrome c, Omi, SMAC, and AIF were released from the mitochondria, whereas Endonuclease G was not. Ceramide also selectively altered the phosphorylation state of members of the M,APK superfamily, causing dephosphorylation of ERK1/2 and hyperphosphorylation of p38 MAP kinases, but not affecting the phosphorylation of JNK or ERK5. Inhibitors of the p38 MAP kinase pathway (SB-202190 or SB-203580) and an inhibitor of the ERK1/2 pathway (U0126) reduced ceramide-induced neuronal death. These p38 and ERK1/2 inhibitors appear to block ceramide-activated apoptotic signaling upstream of the mitochondria, as they attenuated mitochondrial release of cytochrome c, Omi, AIF, and SMAC, as well as reducing ceramide-induced caspase-3 activation. (c) 2005 Elsevier Inc. All rights reserved.