Molecular nanosprings in spider capture-silk threads

被引:321
作者
Becker, N [1 ]
Oroudjev, E
Mutz, S
Cleveland, JP
Hansma, PK
Hayashi, CY
Makarov, DE
Hansma, HG
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Asylum Res, Santa Barbara, CA 93117 USA
[3] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA
[4] Univ Texas, Dept Biochem & Chem, Austin, TX 78712 USA
[5] Univ Texas, Inst Theoret Chem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat858
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating specifically the capture spiral threads from Araneus, an ecribellate orb-weaving spider. The major protein of these threads is flagelliform protein, a variety of silk fibroin. We present models for molecular and supramolecular structures of flagelliform protein, derived from amino acid sequences, force spectroscopy (molecular pulling) and stretching of bulk capture web. Pulling on molecules in capture-silk fibres from Araneus has revealed rupture peaks due to sacrificial bonds, characteristic of other self-healing biomaterials. The overall force changes are exponential for both capture-silk molecules and intact strands of capture silk.
引用
收藏
页码:278 / 283
页数:6
相关论文
共 50 条
  • [1] Protein structure: Stretching the limits
    Alper, J
    [J]. SCIENCE, 2002, 297 (5580) : 329 - 331
  • [2] Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation
    Best, RB
    Li, B
    Steward, A
    Daggett, V
    Clarke, J
    [J]. BIOPHYSICAL JOURNAL, 2001, 81 (04) : 2344 - 2356
  • [3] THE ELASTICITY OF SPIDERS WEBS IS DUE TO WATER-INDUCED MOBILITY AT A MOLECULAR-LEVEL
    BONTHRONE, KM
    VOLLRATH, F
    HUNTER, BK
    SANDERS, JKM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1992, 248 (1322) : 141 - 144
  • [4] ENTROPIC ELASTICITY OF LAMBDA-PHAGE DNA
    BUSTAMANTE, C
    MARKO, JF
    SIGGIA, ED
    SMITH, S
    [J]. SCIENCE, 1994, 265 (5178) : 1599 - 1600
  • [5] Single-molecule studies of DNA mechanics
    Bustamante, C
    Smith, SB
    Liphardt, J
    Smith, D
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (03) : 279 - 285
  • [6] Stretching single stranded DNA, a model polyelectrolyte
    Dessinges, MN
    Maier, B
    Zhang, Y
    Peliti, M
    Bensimon, D
    Croquette, V
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (24)
  • [7] IMAGING CRYSTALS, POLYMERS, AND PROCESSES IN WATER WITH THE ATOMIC FORCE MICROSCOPE
    DRAKE, B
    PRATER, CB
    WEISENHORN, AL
    GOULD, SAC
    ALBRECHT, TR
    QUATE, CF
    CANNELL, DS
    HANSMA, HG
    HANSMA, PK
    [J]. SCIENCE, 1989, 243 (4898) : 1586 - 1589
  • [8] Observing single biomolecules at work with the atomic force microscope
    Engel, A
    Müller, DJ
    [J]. NATURE STRUCTURAL BIOLOGY, 2000, 7 (09) : 715 - 718
  • [9] Fisher TE, 2000, NAT STRUCT BIOL, V7, P719
  • [10] The study of protein mechanics with the atomic force microscope
    Fisher, TE
    Oberhauser, AF
    Carrion-Vazquez, M
    Marszalek, PE
    Fernandez, JM
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (10) : 379 - 384