Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework

被引:119
作者
Wang, Xuguang [1 ,2 ]
机构
[1] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA
[2] Ctr Anal & Predict Storms, Norman, OK USA
关键词
DATA ASSIMILATION SCHEME; TRANSFORM KALMAN FILTER; PART I; RECURSIVE FILTERS; NUMERICAL ASPECTS; HYBRID; SYSTEM; WRF; PREDICTION; MODEL;
D O I
10.1175/2010MWR3245.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Gridpoint statistical interpolation (GSI), a three-dimensional variational data assimilation method (3DVAR) has been widely used in operations and research in numerical weather prediction. The operational GSI uses a static background error covariance, which does not reflect the flow-dependent error statistics. Incorporating ensemble covariance in GSI provides a natural way to estimate the background error covariance in a flow-dependent manner. Different from other 3DVAR-based hybrid data assimilation systems that are preconditioned on the square root of the background error covariance, commonly used GSI minimization is preconditioned upon the full background error covariance matrix. A mathematical derivation is therefore provided to demonstrate how to incorporate the flow-dependent ensemble covariance in the GSI variational minimization.
引用
收藏
页码:2990 / 2995
页数:6
相关论文
共 36 条
[1]   A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses [J].
Aksoy, Altug ;
Dowell, David C. ;
Snyder, Chris .
MONTHLY WEATHER REVIEW, 2009, 137 (06) :1805-1824
[2]   Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting [J].
Buehner, M .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (607) :1013-1043
[3]  
Buehner M, 2010, MON WEA REV, V138, P1885
[4]  
Buehner M., 2010, MON WEA REV, V138, P1902
[5]   Vertical Covariance Localization for Satellite Radiances in Ensemble Kalman Filters [J].
Campbell, William F. ;
Bishop, Craig H. ;
Hodyss, Daniel .
MONTHLY WEATHER REVIEW, 2010, 138 (01) :282-290
[6]  
DARYL TK, 2009, WEA FORECASTING, V24, P1691
[7]  
DERBER J, 1989, J PHYS OCEANOGR, V19, P1333, DOI 10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO
[8]  
2
[9]  
Hamill TM, 2000, MON WEATHER REV, V128, P2905, DOI [10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO
[10]  
2, 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO