Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework

被引:119
作者
Wang, Xuguang [1 ,2 ]
机构
[1] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA
[2] Ctr Anal & Predict Storms, Norman, OK USA
关键词
DATA ASSIMILATION SCHEME; TRANSFORM KALMAN FILTER; PART I; RECURSIVE FILTERS; NUMERICAL ASPECTS; HYBRID; SYSTEM; WRF; PREDICTION; MODEL;
D O I
10.1175/2010MWR3245.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Gridpoint statistical interpolation (GSI), a three-dimensional variational data assimilation method (3DVAR) has been widely used in operations and research in numerical weather prediction. The operational GSI uses a static background error covariance, which does not reflect the flow-dependent error statistics. Incorporating ensemble covariance in GSI provides a natural way to estimate the background error covariance in a flow-dependent manner. Different from other 3DVAR-based hybrid data assimilation systems that are preconditioned on the square root of the background error covariance, commonly used GSI minimization is preconditioned upon the full background error covariance matrix. A mathematical derivation is therefore provided to demonstrate how to incorporate the flow-dependent ensemble covariance in the GSI variational minimization.
引用
收藏
页码:2990 / 2995
页数:6
相关论文
共 36 条
[11]  
2]
[12]  
Hamill TM, 2001, MON WEATHER REV, V129, P2776, DOI 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO
[13]  
2
[14]   RECURSIVE FILTER OBJECTIVE ANALYSIS OF METEOROLOGICAL FIELDS - APPLICATIONS TO NESDIS OPERATIONAL PROCESSING [J].
HAYDEN, CM ;
PURSER, RJ .
JOURNAL OF APPLIED METEOROLOGY, 1995, 34 (01) :3-15
[15]   Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations [J].
Houtekamer, PL ;
Mitchell, HL ;
Pellerin, G ;
Buehner, M ;
Charron, M ;
Spacek, L ;
Hansen, M .
MONTHLY WEATHER REVIEW, 2005, 133 (03) :604-620
[16]   Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables [J].
Jung, Youngsun ;
Zhang, Guifu ;
Xue, Ming .
MONTHLY WEATHER REVIEW, 2008, 136 (06) :2228-2245
[17]   Introduction of the GSI into the NCEP Global Data Assimilation System [J].
Kleist, Daryl T. ;
Parrish, David F. ;
Derber, John C. ;
Treadon, Russ ;
Wu, Wan-Shu ;
Lord, Stephen .
WEATHER AND FORECASTING, 2009, 24 (06) :1691-1705
[18]   Evaluation of a nonlocal quasi-phase observation operator in assimilation of CHAMP radio occultation refractivity with WRF [J].
Liu, Hui ;
Anderson, Jeffrey ;
Kuo, Ying-Hwa ;
Snyder, Chris ;
Caya, Alain .
MONTHLY WEATHER REVIEW, 2008, 136 (01) :242-256
[19]   The potential of the ensemble Kalman filter for NWP - a comparison with 4D-Var [J].
Lorenc, AC .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2003, 129 (595) :3183-3203
[20]   Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances [J].
Purser, RJ ;
Wu, WS ;
Parrish, DF ;
Roberts, NM .
MONTHLY WEATHER REVIEW, 2003, 131 (08) :1536-1548