The neurosphere assay, a method under scrutiny

被引:23
作者
Deleyrolle, Loic P. [1 ]
Rietze, Rodney L. [1 ]
Reynolds, Brent A. [1 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
来源
ACTA NEUROPSYCHIATRICA | 2008年 / 20卷 / 01期
关键词
growth factors; neural stem cell; neurogenesis; neurosphere;
D O I
10.1111/j.1601-5215.2007.00251.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objectives: The aim of this review is to provide an overview of the fundamental features of the neurosphere assay (NSA), which was initially described in 1992, and has since been used not only to detect the presence of stem cells in embryonic and adult mammalian neural tissues, but also to study their characteristics in vitro. Implicit in this review is a detailed examination of the limitations of the NSA, and how this assay is most accurately and appropriately used. Finally we will point out criteria that should be challenged to design alternative ways to overcome the limits of this assay. Methods: NSA is used to isolate putative neural stem cells (NSCs) from the central nervous system (CNS) and to demonstrate the critical stem cell attributes of proliferation, extensive self-renewal and the ability to give rise to a large number of differentiated and functional progeny. Nevertheless, the capability of neural progenitor cells to form neurospheres precludes its utilisation to accurately quantify bona fide stem cell frequency based simply on neurosphere numbers. New culture conditions are needed to be able to distinguish the activity of progenitor cells from stem cells. Conclusion: A commonly used, and arguably misused, methodology, the NSA has provided a wealth of information on precursor activity of cells derived from the embryonic through to the aged CNS. Importantly, the NSA has contributed to the demise of the 'no new neurogenesis' dogma, and the beginning of a new era of CNS regenerative medicine. Nevertheless, the interpretations arising from the utilisation of the NSA need to take into consideration its limits, so as not to be used beyond its specificity and sensitivity.
引用
收藏
页码:2 / 8
页数:7
相关论文
共 84 条
[1]   Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas [J].
Aboody, KS ;
Brown, A ;
Rainov, NG ;
Bower, KA ;
Liu, SX ;
Yang, W ;
Small, JE ;
Herrlinger, U ;
Ourednik, V ;
Black, PM ;
Breakefield, XO ;
Snyder, EY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12846-12851
[2]   NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus [J].
Aguirre, AA ;
Chittajallu, R ;
Belachew, S ;
Gallo, V .
JOURNAL OF CELL BIOLOGY, 2004, 165 (04) :575-589
[3]   Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo [J].
Bjornson, CRR ;
Rietze, RL ;
Reynolds, BA ;
Magli, MC ;
Vescovi, AL .
SCIENCE, 1999, 283 (5401) :534-537
[4]   The adult mouse hippocampal progenitor is neurogenic but not a stem cell [J].
Bull, ND ;
Bartlett, PF .
JOURNAL OF NEUROSCIENCE, 2005, 25 (47) :10815-10821
[5]   Generalized potential of adult neural stem cells [J].
Clarke, DL ;
Johansson, CB ;
Wilbertz, J ;
Veress, B ;
Nilsson, E ;
Karlström, H ;
Lendahl, U ;
Frisén, J .
SCIENCE, 2000, 288 (5471) :1660-1663
[6]   Exogenous and fibroblast growth factor 2/epidermal growth factor-regulated endogenous cytokines regulate neural precursor cell growth and differentiation [J].
Deleyrolle, Loic ;
Marchal-Victorion, Sophie ;
Dromard, Cecile ;
Fritz, Vanessa ;
Saunier, Monique ;
Sabourin, Jean-Charles ;
Van Ba, Christophe Tran ;
Privat, Alain ;
Hugnot, Jean-Philippe .
STEM CELLS, 2006, 24 (03) :748-762
[7]   Subventricular zone astrocytes are neural stem cells in the adult mammalian brain [J].
Doetsch, F ;
Caillé, I ;
Lim, DA ;
García-Verdugo, JM ;
Alvarez-Buylla, A .
CELL, 1999, 97 (06) :703-716
[8]   EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells [J].
Doetsch, F ;
Petreanu, L ;
Caille, I ;
Garcia-Verdugo, JM ;
Alvarez-Buylla, A .
NEURON, 2002, 36 (06) :1021-1034
[9]   A niche for adult neural stem cells [J].
Doetsch, F .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (05) :543-550
[10]   In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells [J].
Dontu, G ;
Abdallah, WM ;
Foley, JM ;
Jackson, KW ;
Clarke, MF ;
Kawamura, MJ ;
Wicha, MS .
GENES & DEVELOPMENT, 2003, 17 (10) :1253-1270