Quantum spin liquid in a spin-1/2 XY model with four-site exchange on the kagome lattice

被引:23
作者
Dang, Long [1 ]
Inglis, Stephen [1 ]
Melko, Roger G. [1 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 13期
基金
加拿大自然科学与工程研究理事会;
关键词
GROUND-STATE; ANTIFERROMAGNETS;
D O I
10.1103/PhysRevB.84.132409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the ground-state phase diagram of a two-dimensional kagome-lattice spin-1/2 XY model (J) with a four-site ring-exchange interaction (K) using quantum Monte Carlo simulations. We find that the superfluid phase, existing in the regime of small ring exchange, undergoes a direct transition to a Z(2) quantum spin liquid phase at (K/J)(c) approximate to 22, which is related to the phase proposed by L. Balents, M. P. A. Fisher, and S. M. Girvin [Phys. Rev. B 65, 224412 (2002)]. The quantum phase transition between the superfluid and the spin liquid phase has exponents z and nu falling in the three-dimensional XY universality class, making it a candidate for an exotic XY* quantum critical point, mediated by the condensation of bosonic spinons.
引用
收藏
页数:4
相关论文
共 33 条
[21]   Ring exchange, the exciton Bose liquid, and bosonization in two dimensions [J].
Paramekanti, A ;
Balents, L ;
Fisher, MPA .
PHYSICAL REVIEW B, 2002, 66 (05) :1-27
[22]   Spin-liquid correlations in the nd-langasite anisotropic kagome antiferromagnet [J].
Robert, J ;
Simonet, V ;
Canals, B ;
Ballou, R ;
Bordet, P ;
Lejay, P ;
Stunault, A .
PHYSICAL REVIEW LETTERS, 2006, 96 (19)
[23]   KAGOME-LATTICE AND TRIANGULAR-LATTICE HEISENBERG ANTIFERROMAGNETS - ORDERING FROM QUANTUM FLUCTUATIONS AND QUANTUM-DISORDERED GROUND-STATES WITH UNCONFINED BOSONIC SPINONS [J].
SACHDEV, S .
PHYSICAL REVIEW B, 1992, 45 (21) :12377-12396
[24]   Striped phase in a quantum XY model with ring exchange -: art. no. 247201 [J].
Sandvik, AW ;
Daul, S ;
Singh, RRP ;
Scalapino, DJ .
PHYSICAL REVIEW LETTERS, 2002, 89 (24) :247201-247201
[25]   Deconfined quantum critical points [J].
Senthil, T ;
Vishwanath, A ;
Balents, L ;
Sachdev, S ;
Fisher, MPA .
SCIENCE, 2004, 303 (5663) :1490-1494
[26]   Z2 gauge theory of electron fractionalization in strongly correlated systems [J].
Senthil, T ;
Fisher, MPA .
PHYSICAL REVIEW B, 2000, 62 (12) :7850-7881
[27]   Numerical evidences of fractionalization in an easy-axis two-spin Heisenberg antiferromagnet [J].
Sheng, DN ;
Balents, L .
PHYSICAL REVIEW LETTERS, 2005, 94 (14)
[28]   Spin liquid state in an organic Mott insulator with a triangular lattice [J].
Shimizu, Y ;
Miyagawa, K ;
Kanoda, K ;
Maesato, M ;
Saito, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (10)
[29]   Schwinger boson mean field theories of spin liquid states on a honeycomb lattice: Projective symmetry group analysis and critical field theory [J].
Wang, Fa .
PHYSICAL REVIEW B, 2010, 82 (02)
[30]   MEAN-FIELD THEORY OF SPIN-LIQUID STATES WITH FINITE-ENERGY GAP AND TOPOLOGICAL ORDERS [J].
WEN, XG .
PHYSICAL REVIEW B, 1991, 44 (06) :2664-2672