Gene structure and expression of the high-affinity nitrate transport system in rice roots

被引:85
作者
Cai, Chao [1 ,2 ,3 ]
Wang, Jun-Yi [1 ,3 ]
Zhu, Yong-Guan [2 ]
Shen, Qi-Rong [4 ]
Li, Bin [1 ]
Tong, Yi-Ping [1 ]
Li, Zhen-Sheng [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Plant Cell & Chromosome Engn, Inst Genet & Dev Biol, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, Beijing 100085, Peoples R China
[3] Chinese Acad Sci, Graduated Univ, Beijing 100049, Peoples R China
[4] Nanjing Agr Univ, Coll Resources & Environm Sci, Nanjing 210095, Peoples R China
关键词
high-affinity nitrate transport system; nitrate influx; NRT2; NAR2; Oryza sativa;
D O I
10.1111/j.1744-7909.2008.00642.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently, some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp. japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from mono-cotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse transcription-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members. The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate influx, and acidic pH (pH 5.0) enhanced the nitrate influx in 1 h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 50 条
[1]   Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max) [J].
Ranamalie Amarasinghe B.H.R. ;
De Bruxelles G.L. ;
Braddon M. ;
Onyeocha I. ;
Forde B.G. ;
Udvardi M.K. .
Planta, 1998, 206 (1) :44-52
[2]   A comparison of NH4+ and NO3- net fluxes along roots of rice and maize [J].
Colmer, TD ;
Bloom, AJ .
PLANT CELL AND ENVIRONMENT, 1998, 21 (02) :240-246
[3]   Molecular and physiological aspects of nitrate uptake in plants [J].
Crawford, NM ;
Glass, ADM .
TRENDS IN PLANT SCIENCE, 1998, 3 (10) :389-395
[4]   Nitrate transport: a key step in nitrate assimilation [J].
Daniel-Vedele, F ;
Filleur, S ;
Caboche, M .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (03) :235-239
[5]   Nitrate transporters in plants: structure, function and regulation [J].
Forde, BG .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :219-235
[6]   Eukaryotic nitrate and nitrite transporters [J].
Galván, A ;
Fernández, E .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (02) :225-233
[7]  
Glass A. D. M., 1995, NITROGEN NUTR HIGHER, P21
[8]   STUDIES OF THE UPTAKE OF NITRATE IN BARLEY .2. ENERGETICS [J].
GLASS, ADM ;
SIDDIQI, MY ;
RUTH, TJ ;
RUFTY, TW .
PLANT PHYSIOLOGY, 1990, 93 (04) :1585-1589
[9]   STUDIES OF THE UPTAKE OF NITRATE IN BARLEY .4. ELECTROPHYSIOLOGY [J].
GLASS, ADM ;
SHAFF, JE ;
KOCHIAN, LV .
PLANT PHYSIOLOGY, 1992, 99 (02) :456-463
[10]  
Glass ADM, 2001, J PLANT NUTR SOIL SC, V164, P199, DOI 10.1002/1522-2624(200104)164:2<199::AID-JPLN199>3.0.CO