Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations

被引:485
作者
Yang, HH [1 ]
Zhang, SQ
Chen, XL
Zhuang, ZX
Xu, JG
Wang, XR
机构
[1] SOA, Inst Oceanog 1, Mat Transport & Transformat Environm & Life Proc, Qingdao 266061, Peoples R China
[2] Xiamen Univ, Dept Chem, Key Lab Analyt Sci MOE, Xiamen 361005, Peoples R China
关键词
D O I
10.1021/ac034920m
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The simultaneous entrapment of biological macromolecules and nanostructured silica-coated magnetite in solgel materials using a reverse-micelle technique leads to a bioactive, mechanically stable, nanometer-sized, and magnetically separable particles. These spherical particles have a typical diameter of 53 +/- 4 nm, a large surface area of 330 m(2)/g, an average pore diameter of 1.5 nm, a total pore volume of 1.427 cm(3)/g and a saturated magnetizaton (M-S) of 3.2 emu/g. Peroxidase entrapped in these particles shows Michaelis-Mentan kinetics and high activity. The catalytic reaction will take place immediately after adding these particles to the reaction solution. These enzyme entrapping particles catalysts can be easily separated from the reaction mixture by simply using an external magnetic field. Experiments have proved that these catalysts have a long-term stability toward temperature and pH change, as compared to free enzyme molecules. To further prove the application of this novel magnetic biomaterial in analytical chemistry, a magnetic-separation immunoassay system was also developed for the quantitative determination of gentamicin. The calibration for gentamicin has a working range of 200-4000 ng/mL, with a detection limit of 160 ng/mL, which is close to that of the fluorescent polarization immunoassay (FPIA) using the same reactants.
引用
收藏
页码:1316 / 1321
页数:6
相关论文
共 34 条
[1]   Artificial viruses and their application to gene delivery. size-controlled gene coating with glycocluster nanoparticles [J].
Aoyama, Y ;
Kanamori, T ;
Nakai, T ;
Sasaki, T ;
Horiuchi, S ;
Sando, S ;
Niidome, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (12) :3455-3457
[2]   SYNTHESIS OF NANOSIZE SILICA IN AEROSOL OT REVERSE MICROEMULSIONS [J].
ARRIAGADA, FJ ;
OSSEOASARE, K .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1995, 170 (01) :8-17
[3]   How to tailor maghemite particle size in γ-Fe2O3-SiO2 nanocomposites [J].
Cannas, C ;
Concas, G ;
Gatteschi, D ;
Musinu, A ;
Piccaluga, G ;
Sangregorio, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :3141-3146
[4]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[5]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[6]  
Collinson MM, 2002, TRAC-TREND ANAL CHEM, V21, P30
[7]   Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles [J].
Dyal, A ;
Loos, K ;
Noto, M ;
Chang, SW ;
Spagnoli, C ;
Shafi, KVPM ;
Ulman, A ;
Cowman, M ;
Gross, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1684-1685
[8]   ENCAPSULATION OF PROTEINS IN TRANSPARENT POROUS SILICATE-GLASSES PREPARED BY THE SOL-GEL METHOD [J].
ELLERBY, LM ;
NISHIDA, CR ;
NISHIDA, F ;
YAMANAKA, SA ;
DUNN, B ;
VALENTINE, JS ;
ZINK, JI .
SCIENCE, 1992, 255 (5048) :1113-1115
[9]   Bio-doped nanocomposite polymers: Sol-gel bioencapsulates [J].
Gill, I .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3404-3421
[10]   Nanotechnology with soft materials [J].
Hamley, IW .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (15) :1692-1712