We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNA coexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.
机构:
Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USA
Deane, CM
论文数: 引用数:
h-index:
机构:
Salwinski, L
论文数: 引用数:
h-index:
机构:
Xenarios, I
Eisenberg, D
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USA
机构:
Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USA
Deane, CM
论文数: 引用数:
h-index:
机构:
Salwinski, L
论文数: 引用数:
h-index:
机构:
Xenarios, I
Eisenberg, D
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, UCLA DOE Lab Struct Biol & Mol Med, Los Angeles, CA 90095 USA