Mesoporous silica spheres as supports for enzyme immobilization and encapsulation

被引:492
作者
Wang, YJ [1 ]
Caruso, F [1 ]
机构
[1] Univ Melbourne, Ctr Nanosci & Nanotechnol, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia
关键词
D O I
10.1021/cm0483137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the immobilization of various enzymes in mesoporous silica (MS) spheres followed by encapsulation via the layer-by-layer assembly of multilayered nanocomposite thin shells. A range of enzymes with different molecular sizes and isoelectric points (pI) (e.g., catalase, peroxidase, cytochrome C. and lysozyme) has been examined in MS particles with a series of pore sizes. MS spheres with a bimodal mesoporous structure (BMS, 2-3 nm and 10-40 nm) show faster immobilization rates and significantly improved enzyme immobilization capacity than similar particles with only the smaller mesopores. High enzyme loadings (20-40 wt %) and rapid uptake (several minutes) were observed in BMS spheres for enzymes with a molecular size less than or equal to 3 nm and pI greater than or equal to 10. Following immobilization of the enzyme catalase, multilayered polyelectrolyte (PE) [poly(diallyldimethylammonium chloride), PDDA/ poly(sodium 4-styrenesulfonate), PSS], or PE/nanoparticle [PDDA/silica nanoparticles, Si-NP] shells were deposited onto the enzyme-loaded spheres. The activity of the encapsulated catalase was retained, even after exposure to enzyme-degrading substances (e.g., proteases). Catalase also exhibits enhanced stability in reaction conditions over a wide pH range (pH 5-10) and retains an activity of 70% after 25 successive batch reactions, demonstrating the usefulness of the loaded particles in biocatalytic applications. The PDDA/PSS multilayer-encapsulated catalase in BMS spheres shows a lower activity than catalase encapsulated by PDDA/Si-NP multilayers. However, the enzyme possesses significantly enhanced reaction stability with increasing PDDA/PSS layer number, which might be caused by a reduced reaction rate. The approach presented provides a general strategy for the encapsulation of macromolecules in MS materials.
引用
收藏
页码:953 / 961
页数:9
相关论文
共 40 条
[1]  
Arica MY, 1999, POLYM INT, V48, P879
[2]  
AVNIR D, 1994, CHEM MAT
[3]   Immobilizing enzymes: How to create more suitable biocatalysts [J].
Bornscheuer, UT .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (29) :3336-3337
[4]   Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing .2. [J].
Caruso, F ;
Niikura, K ;
Furlong, DN ;
Okahata, Y .
LANGMUIR, 1997, 13 (13) :3427-3433
[5]   Protein multilayer formation on colloids through a stepwise self-assembly technique [J].
Caruso, F ;
Möhwald, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (25) :6039-6046
[6]   Influence of polyelectrolyte multilayer coatings on Forster resonance energy transfer between 6-carboxyfluorescein and rhodamine B-labeled particles in aqueous solution [J].
Caruso, F ;
Donath, E ;
Möhwald, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (11) :2011-2016
[7]   Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
SCIENCE, 1998, 282 (5391) :1111-1114
[8]   Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules [J].
Caruso, F ;
Trau, D ;
Möhwald, H ;
Renneberg, R .
LANGMUIR, 2000, 16 (04) :1485-1488
[9]   Immobilization of catalase into chemically crosslinked chitosan beads [J].
Çetinus, SA ;
Öztop, HN .
ENZYME AND MICROBIAL TECHNOLOGY, 2003, 32 (07) :889-894
[10]   Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor [J].
Choi, MMF ;
Yiu, TP .
ENZYME AND MICROBIAL TECHNOLOGY, 2004, 34 (01) :41-47