Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation

被引:127
作者
Su, TT [1 ]
Sprenger, F [1 ]
DiGregorio, PJ [1 ]
Campbell, SD [1 ]
O'Farrell, PH [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
Drosophila; mitosis; proteolysis; cyclin; histone H3;
D O I
10.1101/gad.12.10.1495
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The cyclin proteolysis that accompanies the exit from mitosis in diverse systems appears to be essential for restoration of interphase. The early syncytial divisions of Drosophila embryos, however, occur without detectable oscillations in the total cyclin level or Cdk1 activity. Nonetheless, we found that injection of an established inhibitor of cyclin proteolysis, a cyclin B amino-terminal peptide, prevents exit from mitosis in syncytial embryos. Similarly, injection of a version of Drosophila cyclin B that is refractory to proteolysis results in mitotic arrest. We infer that proteolysis of cyclins is required for exit from syncytial mitoses. This inference can be reconciled with the failure to observe oscillations in total cyclin levels if only a small pool of cyclins is destroyed in each cycle. We find that antibody detection of histone H3 phosphorylation (PH3) acts as a reporter for Cdk1 activity. A gradient of PH3 along anaphase chromosomes suggests local Cdk1 inactivation near the spindle poles in syncytial embryos. This pattern of Cdk1 inactivation would be consistent with local cyclin destruction at centrosomes or kinetochores. The local loss of PH3 during anaphase is specific to the syncytial divisions and is not observed after cellularization. We suggest that exit from mitosis in syncytial cycles is modified to allow nuclear autonomy within a common cytoplasm.
引用
收藏
页码:1495 / 1503
页数:9
相关论文
共 45 条
[1]   Alteration of cell cycle-dependent histone phosphorylations by okadaic acid - Induction of mitosis-specific H3 phosphorylation and chromatin condensation in mammalian interphase cells [J].
Ajiro, K ;
Yoda, K ;
Utsumi, K ;
Nishikawa, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (22) :13197-13201
[2]   Vanadate triggers the transition from chromosome condensation to decondensation in a mitotic mutant (tsTM13) - Inactivation of p34(cdc2)/H1 kinase and dephosphorylation of mitosis-specific histone H3 [J].
Ajiro, K ;
Yasuda, H ;
Tsuji, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03) :923-930
[3]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[4]  
BRADBURY EM, 1992, BIOESSAYS, V14, P9
[5]   DROSOPHILA WEE1 KINASE RESCUES FISSION YEAST FROM MITOTIC CATASTROPHE AND PHOSPHORYLATES DROSOPHILA CDC2 IN-VITRO [J].
CAMPBELL, SD ;
SPRENGER, F ;
EDGAR, BA ;
OFARRELL, PH .
MOLECULAR BIOLOGY OF THE CELL, 1995, 6 (10) :1333-1347
[6]  
Campos-Ortega J. A., 1997, The Embryonic Development of Drosophila melanogaster, Vsecond
[7]   Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p [J].
CohenFix, O ;
Peters, JM ;
Kirschner, MW ;
Koshland, D .
GENES & DEVELOPMENT, 1996, 10 (24) :3081-3093
[8]   Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression [J].
Connelly, C ;
Hieter, P .
CELL, 1996, 86 (02) :275-285
[9]   DISTINCT MOLECULAR MECHANISMS REGULATE CELL-CYCLE TIMING AT SUCCESSIVE STAGES OF DROSOPHILA EMBRYOGENESIS [J].
EDGAR, BA ;
SPRENGER, F ;
DURONIO, RJ ;
LEOPOLD, P ;
OFARRELL, PH .
GENES & DEVELOPMENT, 1994, 8 (04) :440-452
[10]  
Foe Victoria E., 1993, P149