Direct observation of protonation reactions during the catalytic cycle of cytochrome c oxidase

被引:90
作者
Nyquist, RM
Heitbrink, D
Bolwien, C
Gennis, RB
Heberle, J
机构
[1] Forschungszentrum Julich, D-52425 Julich, Germany
[2] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
关键词
electron transfer; infrared attenuated total reflection; membrane protein; bacteriorhodopsis; glutamic acid;
D O I
10.1073/pnas.1530408100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cytochrome c oxidase, the terminal protein in the respiratory chain, converts oxygen into water and helps generate the electrochemical gradient used in the synthesis of ATP. The catalytic action of cytochrome coxidase involves electron transfer, proton transfer, and 02 reduction. These events trigger specific molecular changes at the active site, which, in turn, influence changes throughout the protein, including alterations of amino acid side chain orientations, hydrogen bond patterns, and protonation states. We have used IR difference spectroscopy to investigate such modulations for the functional intermediate states E, R(2), P(m), and F. These spectra reveal deprotonation of its key glutamic acid E286 in the E and in the Pm states. The consecutive deprotonation and reprotonation of E286 twice within one catalytic turnover illustrates the role of this residue as a proton shuttle. In addition, the spectra point toward deprotonation of a redox-active tyrosine, plausibly Y288, in the IF intermediate. Structural insights into the molecular mechanism of catalysis based on the subtle molecular changes observed with IR difference spectroscopy are discussed.
引用
收藏
页码:8715 / 8720
页数:6
相关论文
共 43 条
[31]   Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus [J].
Soulimane, T ;
Buse, G ;
Bourenkov, GP ;
Bartunik, HD ;
Huber, R ;
Than, ME .
EMBO JOURNAL, 2000, 19 (08) :1766-1776
[32]   The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides [J].
Svensson-Ek, M ;
Abramson, J ;
Larsson, G ;
Törnroth, S ;
Brzezinski, P ;
Iwata, S .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 321 (02) :329-339
[33]   Direct infrared detection of the covalently ring linked His-Tyr structure in the active site of the heme-copper oxidases [J].
Tomson, F ;
Bailey, JA ;
Gennis, RB ;
Unkefer, CJ ;
Li, ZH ;
Silks, LA ;
Martinez, RA ;
Donohoe, RJ ;
Dyer, RB ;
Woodruff, WH .
BIOCHEMISTRY, 2002, 41 (48) :14383-14390
[34]   The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 angstrom [J].
Tsukihara, T ;
Aoyama, H ;
Yamashita, E ;
Tomizaki, T ;
Yamaguchi, H ;
ShinzawaItoh, K ;
Nakashima, R ;
Yaono, R ;
Yoshikawa, S .
SCIENCE, 1996, 272 (5265) :1136-1144
[35]   Resonance Raman studies of oxo intermediates in the reaction of pulsed cytochrome bo with hydrogen peroxide [J].
Uchida, T ;
Mogi, T ;
Kitagawa, T .
BIOCHEMISTRY, 2000, 39 (22) :6669-6678
[36]   QUANTITATIVE IR SPECTROPHOTOMETRY OF PEPTIDE COMPOUNDS IN WATER (H2O) SOLUTIONS .1. SPECTRAL PARAMETERS OF AMINO-ACID RESIDUE ABSORPTION-BANDS [J].
VENYAMINOV, SY ;
KALNIN, NN .
BIOPOLYMERS, 1990, 30 (13-14) :1243-1257
[37]   Glutamic acid 286 in subunit I of cytochrome bo(3) is involved in proton translocation [J].
Verkhovskaya, ML ;
GarciaHorsman, A ;
Puustinen, A ;
Rigaud, JL ;
Morgan, JE ;
Verkhovsky, MI ;
Wikstrom, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (19) :10128-10131
[38]  
WIKSTROM M, 1992, J BIOL CHEM, V267, P10266
[39]   Proton translocation by cytochrome c oxidase in different phases of the catalytic cycle [J].
Wikström, M ;
Verkhovsky, MI .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2002, 1555 (1-3) :128-132
[40]   IDENTIFICATION OF THE ELECTRON TRANSFERS IN CYTOCHROME-OXIDASE THAT ARE COUPLED TO PROTON-PUMPING [J].
WIKSTROM, M .
NATURE, 1989, 338 (6218) :776-778