Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior

被引:144
作者
Liu, F
Zhang, XB
Cheng, JP
Tu, JP
Kong, FZ
Huang, WZ
Chen, CP
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanotubes; catalyst; chemical vapor deposition; transmission electron microscopy; gas storage;
D O I
10.1016/S0008-6223(03)00302-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Short multi-wall carbon nanotubes (MWNTs) with open tips were obtained by mechanical ball milling. The microstructure characteristics of MWNTs before and after ball milling were checked by transmission electron microscopy (TEM). The effect of ball milling on the hydrogen adsorption behavior of the MWNTs was studied. The hydrogen adsorption experiments were carried out at room temperature under a pressure of 8-9 MPa. The hydrogen adsorption capacity of carbon nanotubes milled for 10 It was 0.66 wt%, which was about six times that of MWNTs without milling. For the carbon nanotubes milled with MgO for 1 h, a hydrogen adsorption capacity of 0.69 wt% was obtained. The enhancement of hydrogen adsorption might result from the increase of defects and surface area of the MWNTs caused by ball milling. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2527 / 2532
页数:6
相关论文
共 28 条
[1]   Ball-milled carbon and hydrogen storage [J].
Awasthi, K ;
Kamalakaran, R ;
Singh, AK ;
Srivastava, ON .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (04) :425-432
[2]   Hydrogen storage in graphite nanofibers [J].
Chambers, A ;
Park, C ;
Baker, RTK ;
Rodriguez, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22) :4253-4256
[3]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[4]   Hydrogen storage in carbon nanotubes [J].
Cheng, HM ;
Yang, QH ;
Liu, C .
CARBON, 2001, 39 (10) :1447-1454
[5]   Review of hydrogen storage by adsorption in carbon nanotubes [J].
Darkrim Lamari, F ;
Malbrunot, P ;
Tartaglia, GP .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :193-202
[6]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[7]   STUDIES OF LITHIUM INTERCALATION INTO CARBONS USING NONAQUEOUS ELECTROCHEMICAL-CELLS [J].
FONG, R ;
VONSACKEN, U ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2009-2013
[8]   The effect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes [J].
Huang, WZ ;
Zhang, XB ;
Tu, JP ;
Kong, FZ ;
Ma, JX ;
Liu, F ;
Lu, HM ;
Chen, CP .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (01) :144-148
[9]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[10]   Transformation of carbon nanotubes to nanoparticles by ball milling process [J].
Li, YB ;
Wei, BQ ;
Liang, J ;
Yu, Q ;
Wu, DH .
CARBON, 1999, 37 (03) :493-497