Two-dimensional FLD for face recognition

被引:164
作者
Xiong, HL [1 ]
Swamy, MNS [1 ]
Ahmad, MO [1 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fisher criterion; principal component analysis (PCA); linear discriminant analysis (LDA);
D O I
10.1016/j.patcog.2004.12.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new scheme of face image feature extraction, namely, the two-dimensional Fisher linear discriminant. Experiments on the ORL and the UMIST face databases show that the new scheme outperforms the PCA and the conventional PICA + FLD schemes, not only in its computational efficiency, but also in its performance for the task of face recognition. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1121 / 1124
页数:4
相关论文
共 5 条
  • [1] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [2] A new LDA-based face recognition system which can solve the small sample size problem
    Chen, LF
    Liao, HYM
    Ko, MT
    Lin, JC
    Yu, GJ
    [J]. PATTERN RECOGNITION, 2000, 33 (10) : 1713 - 1726
  • [3] Fukunaga K., 1990, INTRO STAT PATTERN R
  • [4] Two-dimensional PCA: A new approach to appearance-based face representation and recognition
    Yang, J
    Zhang, D
    Frangi, AF
    Yang, JY
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (01) : 131 - 137
  • [5] A direct LDA algorithm for high-dimensional data - with application to face recognition
    Yu, H
    Yang, H
    [J]. PATTERN RECOGNITION, 2001, 34 (10) : 2067 - 2070