Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy

被引:114
作者
Gabbard, Hunter [1 ]
Messenger, Chris [1 ]
Heng, Ik Siong [1 ]
Tonolini, Francesco [2 ]
Murray-Smith, Roderick [2 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland
[2] Univ Glasgow, Sch Comp Sci, Glasgow, Lanark, Scotland
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
657.2 Extraterrestrial Physics and Stellar Phenomena - 723.4.1 Expert Systems - 921.4 Combinatorial Mathematics; Includes Graph Theory; Set Theory - 931.5 Gravitation; Relativity and String Theory;
D O I
10.1038/s41567-021-01425-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of transient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally sensitive but computationally costly Bayesian inference approaches, where typical analyses have taken between 6 h and 6 d. For binary neutron star and neutron star-black hole systems prompt counterpart electromagnetic signatures are expected on timescales between 1 s and 1 min. However, the current fastest method for alerting electromagnetic follow-up observers can provide estimates in of the order of 1 min on a limited range of key source parameters. Here, we show that a conditional variational autoencoder pretrained on binary black hole signals can return Bayesian posterior probability estimates. The training procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate samples describing the posterior distribution around six orders of magnitude faster than existing techniques. A method for estimating the source properties of gravitational-wave events shows a speed-up of six orders of magnitude over established approaches. This is a promising tool for follow-up observations of electromagnetic counterparts.
引用
收藏
页码:112 / +
页数:12
相关论文
共 37 条
[1]  
Abbott A, 2017, NATURE, V551, P425, DOI 10.1038/551425a
[2]   Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Appert, S. ;
Arai, K. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Asada, H. ;
Ascenzi, S. ;
Ashton, G. ;
Aso, Y. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atsuta, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Avila-Alvarez, A. ;
Awai, K. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baiotti, L. .
LIVING REVIEWS IN RELATIVITY, 2018, 21
[3]   GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4 M⊙ [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. .
ASTROPHYSICAL JOURNAL LETTERS, 2020, 892 (01)
[4]   Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Aleman, K. M. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, Koya ;
Arai, Koji ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asada, H. ;
Asali, Y. ;
Ashton, G. ;
Aso, Y. .
ASTROPHYSICAL JOURNAL LETTERS, 2021, 915 (01)
[5]   Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space [J].
Anh Nguyen ;
Clune, Jeff ;
Bengio, Yoshua ;
Dosovitskiy, Alexey ;
Yosinski, Jason .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3510-3520
[6]  
[Anonymous], 2017, WORKSH DEEP LEARN PH
[7]   BILBY: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy [J].
Ashton, Gregory ;
Hubner, Moritz ;
Lasky, Paul D. ;
Talbot, Colm ;
Ackley, Kendall ;
Biscoveanu, Sylvia ;
Chu, Qi ;
Divakarla, Atul ;
Easter, Paul J. ;
Goncharov, Boris ;
Vivanco, Francisco Hernandez ;
Harms, Jan ;
Lower, Marcus E. ;
Meadors, Grant D. ;
Melchor, Denyz ;
Payne, Ethan ;
Pitkin, Matthew D. ;
Powel, Jade ;
Sarin, Nikhil ;
Smith, Rory J. E. ;
Thrane, Eric .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2019, 241 (02)
[8]   Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference [J].
Chua, Alvin J. K. ;
Vallisneri, Michele .
PHYSICAL REVIEW LETTERS, 2020, 124 (04)
[9]   Limiting the effects of earthquakes on gravitational-wave interferometers [J].
Coughlin, Michael ;
Earle, Paul ;
Harms, Jan ;
Biscans, Sebastien ;
Buchanan, Christopher ;
Coughlin, Eric ;
Donovan, Fred ;
Fee, Jeremy ;
Gabbard, Hunter ;
Guy, Michelle ;
Mukund, Nikhil ;
Perry, Matthew .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (04)
[10]   The frontier of simulation-based inference [J].
Cranmer, Kyle ;
Brehmer, Johann ;
Louppe, Gilles .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30055-30062