Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference

被引:88
作者
Chua, Alvin J. K. [1 ]
Vallisneri, Michele [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
39;
D O I
10.1103/PhysRevLett.124.041102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We seek to achieve the holy grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior p(theta vertical bar D) for the source parameters theta, given the detector data D. To do so, we train a deep neural network to take as input a signal + noise dataset (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments.
引用
收藏
页数:6
相关论文
共 38 条
[1]   Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. ;
Baker, P. T. ;
Baldaccini, F. .
ASTROPHYSICAL JOURNAL, 2019, 875 (02)
[2]  
[Anonymous], 2019, Astrophys. J. Lett, V882, pL24
[3]  
[Anonymous], 2019, arXiv:1811.12907 astro-ph.HE
[4]  
[Anonymous], 2002, Cambridge Series in Statistical and Probabilistic Mathematics
[5]   Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms [J].
Arun, K. G. ;
Buonanno, Alessandra ;
Faye, Guillaume ;
Ochsner, Evan .
PHYSICAL REVIEW D, 2009, 79 (10)
[6]  
Bridle J. S., 1990, Neurocomputing, P227
[7]   Gravitational wave parameter estimation with compressed likelihood evaluations [J].
Canizares, Priscilla ;
Field, Scott E. ;
Gair, Jonathan R. ;
Tiglio, Manuel .
PHYSICAL REVIEW D, 2013, 87 (12)
[8]   Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis [J].
Christensen, N ;
Meyer, R .
PHYSICAL REVIEW D, 1998, 58 (08)
[9]   Reduced-Order Modeling with Artificial Neurons for Gravitational-Wave Inference [J].
Chua, Alvin J. K. ;
Galley, Chad R. ;
Vallisneri, Michele .
PHYSICAL REVIEW LETTERS, 2019, 122 (21)
[10]  
Creighton J., 2011, Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis