Depth map calculation for a variable number of moving objects using Markov sequential object processes

被引:7
作者
van Lieshout, M. N. M. [1 ,2 ]
机构
[1] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
[2] Eindhoven Univ Technol, NL-1009 AB Amsterdam, Netherlands
关键词
depth calculation; Markov chain Monte Carlo; Markov sequential object process; object tracking; regularization; stochastic geometry;
D O I
10.1109/TPAMI.2008.45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We advocate the use of Markov sequential object processes for tracking a variable number of moving objects through video frames with a view towards depth calculation. A regression model based on a sequential object process quantifies goodness of fit; regularization terms are incorporated to control within and between frame object interactions. We construct a Markov chain Monte Carlo method for finding the optimal tracks and associated depths and illustrate the approach on a synthetic data set as well as a sports sequence.
引用
收藏
页码:1308 / 1312
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 1993, Journal of Applied Statistics, DOI DOI 10.1080/02664769300000065
[2]  
[Anonymous], 1999, BAYESIAN ANAL SPATIA
[3]  
BADDELEY A, 1992, P 11 INT ASS PATT RE, pB136
[4]  
Eubank R.L., 2006, A Kalman Filter Primer
[5]  
GEYER CJ, 1994, SCAND J STAT, V21, P359
[6]  
GOODMAN IR, 1997, MATH DATA FUSION B, V39
[7]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[8]  
Green PJ, 1995, BIOMETRIKA, V82, P711, DOI 10.2307/2337340
[9]  
Hough PV., 1962, US Patent, Patent No. 3069654
[10]   Sequential Monte Carlo methods for multiple target tracking and data fusion [J].
Hue, C ;
Le Cadre, JP ;
Pérez, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :309-325