How can azobenzene block copolymer vesicles be dissociated and reformed by light?

被引:203
作者
Tong, X [1 ]
Wang, G [1 ]
Soldera, A [1 ]
Zhao, Y [1 ]
机构
[1] Univ Sherbrooke, Dept Chim, Sherbrooke, PQ J1K 2R1, Canada
关键词
D O I
10.1021/jp0524274
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The underlying mechanism of UV light-induced dissociation and visible light-induced reformation of vesicles formed by an azobenzene diblock copolymer was investigated. These processes were studied in situ by monitoring changes in optical transmittance of the vesicular solution while being exposed to UV or visible light irradiation. The results indicate that the UV-induced dissociation of the vesicles results from their thermodynamic instability due to a shift of the hydrophilic/hydrophobic balance arising from the trans-cis isomerization, while their reaggregation takes place upon visible light irradiation that shifts the hydrophilic/hydrophobic balance in the opposite direction after the reverse cis-trans isomerization. The study suggests a specific design principle for obtaining UV light-dissociable and visible light-recoverable vesicles based on azobenzene block copolymers. On one hand, the structure of azobenzene moiety used in the hydrophobic block should have a small (near zero) dipole moment in the trans form and a significantly higher dipole moment in the cis form, which ensures a significant increase in polarity of the hydrophobic block under UV light irradiation. On the other hand, the hydrophilic block should be weakly hydrophilic. The conjunction of the two conditions can make the light-induced shift of the hydrophilic/hydrophobic balance important enough to lead to the reversible change in vesicular aggregation.
引用
收藏
页码:20281 / 20287
页数:7
相关论文
共 36 条
[1]   Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change [J].
Bae, Y ;
Fukushima, S ;
Harada, A ;
Kataoka, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (38) :4640-4643
[2]   Stimuli-responsive polypeptide vesicles by conformation-specific assembly [J].
Bellomo, EG ;
Wyrsta, MD ;
Pakstis, L ;
Pochan, DJ ;
Deming, TJ .
NATURE MATERIALS, 2004, 3 (04) :244-248
[3]   Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate) [J].
Chung, JE ;
Yokoyama, M ;
Yamato, M ;
Aoyagi, T ;
Sakurai, Y ;
Okano, T .
JOURNAL OF CONTROLLED RELEASE, 1999, 62 (1-2) :115-127
[4]   Inner core segment design for drug delivery control of thermo-responsive polymeric micelles [J].
Chung, JE ;
Yokoyama, M ;
Okano, T .
JOURNAL OF CONTROLLED RELEASE, 2000, 65 (1-2) :93-103
[5]   Photoactive thermoplastic elastomers of azobenzene-containing triblock copolymers prepared through atom transfer radical polymerization [J].
Cui, L ;
Tong, X ;
Yan, XH ;
Liu, GJ ;
Zhao, Y .
MACROMOLECULES, 2004, 37 (19) :7097-7104
[6]   Synthesis of azobenzene-containing diblock copolymers using atom transfer radical polymerization and the photoalignment behavior [J].
Cui, L ;
Zhao, Y ;
Yavrian, A ;
Galstian, T .
MACROMOLECULES, 2003, 36 (22) :8246-8252
[7]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[8]   Photofunctional vesicles containing prussian blue and azobenzene [J].
Einaga, Y ;
Sato, O ;
Iyoda, T ;
Fujishima, A ;
Hashimoto, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (15) :3745-3750
[9]   A new approach towards acid sensitive copolymer micelles for drug delivery [J].
Gillies, ER ;
Fréchet, JMJ .
CHEMICAL COMMUNICATIONS, 2003, (14) :1640-1641
[10]   Supramolecular drug-delivery systems based on polymeric core-shell architectures [J].
Haag, R .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (03) :278-282