Optimal robust M-estimates of location

被引:23
作者
Fraiman, R
Yohai, VJ
Zamar, RH
机构
[1] Univ San Andres, Dept Matemat, RA-1644 Victoria, Argentina
[2] Univ Buenos Aires, Dept Matemat, RA-1053 Buenos Aires, DF, Argentina
[3] CONICET, RA-1033 Buenos Aires, DF, Argentina
[4] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
M-estimates; robust location; minimax intervals;
D O I
10.1214/aos/996986506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We find optimal robust estimates for the location parameter of n independent measurements from a common distribution F that belongs to a contamination neighborhood of a normal distribution. We follow an asymptotic minimax approach similar to Huber's but work with full neighborhoods of the central parametric model including nonsymmetric distributions. Our optimal estimates minimize monotone functions of the estimate's asymptotic variance and bias, which include asymptotic approximations for the quantiles of the estimate's distribution. In particular, we obtain robust asymptotic confidence intervals of minimax length.
引用
收藏
页码:194 / 223
页数:30
相关论文
共 12 条
[1]  
Davies PL, 1998, ANN STAT, V26, P1103
[2]   INFLUENCE CURVE AND ITS ROLE IN ROBUST ESTIMATION [J].
HAMPEL, FR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (346) :383-393
[3]  
Huber P. J., 1981, ROBUST STAT
[4]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[5]   ROBUST CONFIDENCE LIMITS [J].
HUBER, PJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1968, 10 (04) :269-&
[6]  
HUBERCAROL C, 1970, THESIS EIDGEN TH ZUR
[7]   EFFICIENCY-CONSTRAINED BIAS-ROBUST ESTIMATION OF LOCATION [J].
MARTIN, RD ;
ZAMAR, RH .
ANNALS OF STATISTICS, 1993, 21 (01) :338-354
[8]  
RIEDER H., 1994, ROBUST ASYMPTOTIC ST
[9]  
Rousseeuw P. J., 1984, LECTURE NOTES STATIS, V26, P256
[10]  
Salibian-Barrera M., 2000, THESIS U BRIT COLUMB