Entropy was shown to play an equally important role as enthalpy for how enantioselectivity changes when redesigning an enzyme. By studying the temperature dependence of the enantiomeric ratio E of an enantioselective enzyme, its differential activation enthalpy (Delta (R-S)DeltaH(double dagger)) and entropy (Delta (R-S)DeltaS(double dagger)) components can be determined. This was done for the resolution of 3-methyl-2-butanol catalyzed by Candida antarctica lipase B and five variants with one or two point mutations. Delta (R-S)DeltaS(double dagger) was in all cases equally significant as Delta (R-S)DeltaH(double dagger) to E. One variant, T103G, displayed an increase in E, the others a decrease. The altered enantioselectivities of the variants were all related to simultaneous changes in Delta (R-S)DeltaH(double dagger) and Delta (R-S)DeltaS(double dagger). Although the changes in Delta (R-S)DeltaH(double dagger) and Delta (R-S)DeltaS(double dagger) were of a compensatory nature the compensation was not perfect, thereby allowing modifications of E. Both the W104H and the T103G variants displayed larger Delta (R-S)DeltaH(double dagger). than wild type but exhibited a decrease or increase, respectively, in E due to their different relative increase in Delta (R-S)DeltaS(double dagger).