The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans

被引:94
作者
Peden, EM [1 ]
Barr, MM [1 ]
机构
[1] Univ Wisconsin, Sch Pharm, Madison, WI 53705 USA
关键词
D O I
10.1016/j.cub.2004.12.073
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Male mating behavior of the nematode Caenorhabditis elegans offers an intriguing model to study the genetics of sensory behavior, cilia function, and autosomal dominant polycystic kidney disease (ADPKD). The C. elegans polycystins LOV-1 and PKD-2 act in male-specific sensory cilia required for response and vulva-location mating behaviors. Results: Here, we identify and characterize a new mating mutant, sy511. sy511 behavioral phenotypes were mapped to a mutation in the klp-6 locus, a gene encoding a member of the kinesin-3 family (previously known as the UNC-104/Kif1A family). KLP-6 has a single homolog of unknown function in vertebrate genomes, including fish, chicken, mouse, rat, and human. We show that KLP-6 expresses exclusively in sensory neurons with exposed ciliated endings and colocalizes with the polycystins in cilia of male-specific neurons. Cilia of klp-6 mutants appear normal, suggesting a defect in sensory neuron function but not development. KLP-6 structure-function analysis reveals that the putative cargo binding domain directs the motor to cilia. Consistent with a motor-cargo association between KLP-6 and the polycystins, klp-6 is required for PKD-2 localization and function within cilia. Genetically, we find klp-6 regulates behavior through polycystin-dependent and -independent pathways. Conclusion: Multiple ciliary transport pathways dependent on kinesin-II, OSM-3, and KLP-6 may act sequentially to build cilia and localize sensory ciliary membrane proteins such as the polycystins. We propose that KLP-6 and the polycystins function as an evolutionarily conserved ciliary unit. KLP-6 promises new routes to understanding cilia function, behavior, and ADPKD.
引用
收藏
页码:394 / 404
页数:11
相关论文
共 55 条
[1]   POLARITY ORIENTATION OF MICROTUBULES IN HIPPOCAMPAL-NEURONS - UNIFORMITY IN THE AXON AND NONUNIFORMITY IN THE DENDRITE [J].
BAAS, PW ;
DEITCH, JS ;
BLACK, MM ;
BANKER, GA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (21) :8335-8339
[2]   A polycystic kidney-disease gene homologue required for male mating behaviour in C-elegans [J].
Barr, MM ;
Sternberg, PW .
NATURE, 1999, 401 (6751) :386-389
[3]   Caenorhabditis elegans as a model to study renal development and disease:: Sexy cilia [J].
Barr, MM .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2005, 16 (02) :305-312
[4]   The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway [J].
Barr, MM ;
DeModena, J ;
Braun, D ;
Nguyen, CQ ;
Hall, DH ;
Sternberg, PW .
CURRENT BIOLOGY, 2001, 11 (17) :1341-1346
[5]  
BRENNER S, 1974, GENETICS, V77, P71
[6]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[7]   Kinesin's tail domain is an inhibitory regulator of the motor domain [J].
Coy, DL ;
Hancock, WO ;
Wagenbach, M ;
Howard, J .
NATURE CELL BIOLOGY, 1999, 1 (05) :288-292
[8]   Genetic basis of male sexual behavior [J].
Emmons, SW ;
Lipton, J .
JOURNAL OF NEUROBIOLOGY, 2003, 54 (01) :93-110
[9]   Genetics of sensory mechanotransduction [J].
Ernstrom, GG ;
Chalfie, M .
ANNUAL REVIEW OF GENETICS, 2002, 36 :411-453
[10]   Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain [J].
Friedman, DS ;
Vale, RD .
NATURE CELL BIOLOGY, 1999, 1 (05) :293-297