Numerical differentiation for the second order derivatives of functions of two variables

被引:19
作者
Nakamura, Gen [1 ]
Wang, Shengzhang [2 ]
Wang, Yanbo [3 ]
机构
[1] Hokkaido Univ, Grad Sch Sci, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Fudan Univ, Dept Engn Sci & Mech, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
numerical differentiation; Tikhonov regularization; Green's function;
D O I
10.1016/j.cam.2006.11.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A regularized optimization problem for computing numerical differentiation for the second order derivatives of functions with two variables from noisy values at scattered points is discussed in this article. We prove the existence and uniqueness of the solution to this problem, provide a constructive scheme for the solution which is based on bi-harmonic Green's function and give a convergence estimate of the regularized solution to the exact solution for the problem under a simple choice of regularization parameter. The efficiency of the constructive scheme is shown by some numerical examples. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 358
页数:18
相关论文
共 15 条
[1]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[2]   One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization [J].
Cheng, J ;
Yamamoto, M .
INVERSE PROBLEMS, 2000, 16 (04) :L31-L38
[3]  
CHENG J, 2004, CONT MATH, V348, P233
[4]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[5]  
Groetsch C., 1984, THEORY TIKHONOV REGU
[6]   DIFFERENTIATION OF APPROXIMATELY SPECIFIED FUNCTIONS [J].
GROETSCH, CW .
AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (09) :847-850
[7]   Inverse problems light: Numerical differentiation [J].
Hanke, M ;
Scherzer, O .
AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (06) :512-521
[8]  
HON YC, 2003, NUMERICAL DIFFERENTI
[9]   ESTIMATES OF DERIVATIVES OF RANDOM FUNCTIONS .2. [J].
MILLER, TL ;
RAMM, AG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 110 (02) :429-435
[10]  
RAMM A., 1968, Izv. Vyss. Ucebn.. Zaved. Matematika, V1968, P131