Primary cultured neurons devoid of cellular prion display lower responsiveness to Staurosporine through the control of p53 at both transcriptional and post-transcriptional levels

被引:55
作者
Paitel, E
Sunyach, C
da Costa, CA
Bourdon, JC
Vincent, B
Checler, F
机构
[1] CNRS, UMR 6097, Inst Pharmacol Mol & Cellulaire, F-06560 Valbonne, France
[2] Ninewells Hosp & Med Sch, Dundee DD1 9SY, Scotland
关键词
D O I
10.1074/jbc.M310453200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We assessed the contribution of the cellular prion protein (PrPc) in the control of neuronal apoptosis by examining cell death in both human cells and murine primary cultured neurons. We first confirmed our previous finding that staurosporine-induced caspase activation is increased by PrPc overexpression in HEK293 cells. We show here that this phenotype is fully dependent on p53 and that the control of p53 activity by PrPc occurs at both transcriptional and post-transcriptional levels in human cells. Of most interest, we demonstrate that neuronal endogenous PrPc also controls a p53-dependent pro-apoptotic phenotype. Thus, DNA fragmentation and TUNEL ( terminal deoxynucleotidyltransferase- mediated dUTP nick end-labeling)-positive cells were lower in primary cultured neurons derived from Zrch-1 mice embryos in which PrPc has been abrogated than in wildtype neurons. PrPc knock-out neurons also displayed drastically diminished caspase-3-like activity and immunoreactivity together with reduced p53 expression and transcriptional activity, a phenotype complemented in part by PrPc transfection. Interestingly, p53 expression was also reduced in the brain of adult Prnp(-/-) mice. Neuronal PrPc likely controls p53 at a post-transcriptional level because the deletion of cellular prion protein is accompanied by a higher Mdm2-like immunoreactivity and reduced phosphorylated p38 MAPK expression. We therefore propose that the physiological function of endogenous cellular prion could be to regulate p53-dependent caspase-3-mediated neuronal cell death. This phenotype likely occurs through upregulation of p53 promoter transactivation as well as downstream by controlling p53 stability via Mdm2 expression.
引用
收藏
页码:612 / 618
页数:7
相关论文
共 38 条
[1]   Prions: Health scare and biological challenge [J].
Aguzzi, A ;
Montrasio, F ;
Kaeser, PS .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (02) :118-126
[2]   Blood simple prion diagnostics [J].
Aguzzi, A .
NATURE MEDICINE, 2001, 7 (03) :289-290
[3]   Prion protein protects human neurons against Bax-mediated apoptosis [J].
Bounhar, Y ;
Zhang, Y ;
Goodyer, CG ;
LeBlanc, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (42) :39145-39149
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Normal host prion protein necessary for scrapie-induced neurotoxicity [J].
Brandner, S ;
Isenmann, S ;
Raeber, A ;
Fischer, M ;
Sailer, A ;
Kobayashi, Y ;
Marino, S ;
Weissmann, C ;
Aguzzi, A .
NATURE, 1996, 379 (6563) :339-343
[6]   MICE DEVOID OF PRP ARE RESISTANT TO SCRAPIE [J].
BUELER, H ;
AGUZZI, A ;
SAILER, A ;
GREINER, RA ;
AUTENRIED, P ;
AGUET, M ;
WEISSMANN, C .
CELL, 1993, 73 (07) :1339-1347
[7]   NORMAL DEVELOPMENT AND BEHAVIOR OF MICE LACKING THE NEURONAL CELL-SURFACE PRP PROTEIN [J].
BUELER, H ;
FISCHER, M ;
LANG, Y ;
BLUETHMANN, H ;
LIPP, HP ;
DEARMOND, SJ ;
PRUSINER, SB ;
AGUET, M ;
WEISSMANN, C .
NATURE, 1992, 356 (6370) :577-582
[8]   Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound [J].
Bykov, VJN ;
Issaeva, N ;
Shilov, A ;
Hultcrantz, M ;
Pugacheva, E ;
Chumakov, P ;
Bergman, J ;
Wiman, KG ;
Selivanova, G .
NATURE MEDICINE, 2002, 8 (03) :282-288
[9]   Alzheimer's and prion diseases: distinct pathologies, common proteolytic denominators [J].
Checler, F ;
Vincent, B .
TRENDS IN NEUROSCIENCES, 2002, 25 (12) :616-620
[10]   Prion protein and the transmissible spongiform encephalopathy diseases [J].
Chesebro, B .
NEURON, 1999, 24 (03) :503-506