Multiscale testing of qualitative hypotheses

被引:122
作者
Dümbgen, L
Spokoiny, VG
机构
[1] Med Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
[2] Karl Weierstrass Inst Math, D-10117 Berlin, Germany
关键词
adaptivity; concavity; Levy's modulus of continuity; monotonicity; multiple test; nonparametric; positivity;
D O I
10.1214/aos/996986504
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that one observes a process Y on the unit interval, where dY(t) = n(1/2)f(t) dt + dW (t) with an unknown function parameter f, given scale parameter n greater than or equal to 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Levy's modulus of continuity of Brownian motion.
引用
收藏
页码:124 / 152
页数:29
相关论文
共 35 条
[21]  
INGSTER YL, 1986, THEOR PROBAB APPL, V32, P333
[22]   Consistency and Monte Carlo simulation of a data driven version of smooth goodness-of-fit tests [J].
Kallenberg, WCM ;
Ledwina, T .
ANNALS OF STATISTICS, 1995, 23 (05) :1594-1608
[23]   Testing for the equality of two nonparametric regression curves [J].
Koul, HL ;
Schick, A .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 65 (02) :293-314
[24]   DATA-DRIVEN VERSION OF NEYMANS SMOOTH TEST OF FIT [J].
LEDWINA, T .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (427) :1000-1005
[25]   Remarks on extremal problems in nonparametric curve estimation [J].
Leonov, SL .
STATISTICS & PROBABILITY LETTERS, 1999, 43 (02) :169-178
[26]   Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point [J].
Lepski, OV ;
Tsybakov, AB .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (01) :17-48
[27]   SOME ASYMPTOTICS FOR MULTIMODALITY TESTS BASED ON KERNEL DENSITY ESTIMATES [J].
MAMMEN, E ;
MARRON, JS ;
FISHER, NI .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (01) :115-132
[28]   EXCESS MASS ESTIMATES AND TESTS FOR MULTIMODALITY [J].
MULLER, DW ;
SAWITZKI, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (415) :738-746
[29]  
Nussbaum M, 1996, ANN STAT, V24, P2399
[30]   BANDWIDTH CHOICE FOR NONPARAMETRIC REGRESSION [J].
RICE, J .
ANNALS OF STATISTICS, 1984, 12 (04) :1215-1230