An alternative to Ewald sums. Part 3: Implementation and results

被引:21
作者
Strebel, R [1 ]
Sperb, R [1 ]
机构
[1] ETH Zentrum, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
MMM algorithm; Ewald sum; Coulomb interactions;
D O I
10.1080/08927020108024519
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper describes the implementation of a method for computing the Coulombic interaction in a periodic system. If the basic cell contains it charges the CPU time required to compute all forces and the total energy is O(n.log n) in contrast to Ewald's method with O(n(3/2)).
引用
收藏
页码:61 / 74
页数:14
相关论文
共 7 条
[1]   SIMULATION OF ELECTROSTATIC SYSTEMS IN PERIODIC BOUNDARY-CONDITIONS .1. LATTICE SUMS AND DIELECTRIC-CONSTANTS [J].
DELEEUW, SW ;
PERRAM, JW ;
SMITH, ER .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 373 (1752) :27-56
[2]  
Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253
[3]  
HOCKNEY RW, 1981, COMPUTER SIMULATION
[5]   An alternative to Ewald sums - Part I: Identities for sums [J].
Sperb, R .
MOLECULAR SIMULATION, 1998, 20 (03) :179-200
[6]   An alternative to Ewald sums, part 2: The Coulomb potential in a periodic system [J].
Sperb, R .
MOLECULAR SIMULATION, 1999, 22 (03) :199-212
[7]  
STREBEL R, 2000, THESIS ETH ZURICH