The mechanisms by which family 10 glycoside hydrolases bind decorated substrates

被引:157
作者
Pell, G
Taylor, EJ
Gloster, TM
Turkenburg, JP
Fontes, CMGA
Ferreira, LMA
Nagy, T
Clark, SJ
Davies, GJ
Gilbert, HJ
机构
[1] Newcastle Univ, Sch Cell & Mol Biosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ York, Dept Chem, Struct Biol Lab, York YO10 5YW, N Yorkshire, England
[3] Univ Tecn Lisboa, CIISA Fac Med Vet, P-1300477 Lisbon, Portugal
关键词
D O I
10.1074/jbc.M312278200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endo-beta-1,4-xylanases (xylanases), which cleave beta-1,4 glycosidic bonds in the xylan backbone, are important components of the repertoire of enzymes that catalyze plant cell wall degradation. The mechanism by which these enzymes are able to hydrolyze a range of decorated xylans remains unclear. Here we reveal the three-dimensional structure, determined by x-ray crystallography, and the catalytic properties of the Cellvibrio mixtus enzyme Xyn10B (CmXyn10B), the most active GH10 xylanase described to date. The crystal structure of the enzyme in complex with xylopentaose reveals that at the +1 subsite the xylose moiety is sandwiched between hydrophobic residues, which is likely to mediate tighter binding than in other GH10 xylanases. The crystal structure of the xylanase in complex with a range of decorated xylooligosaccharides reveals how this enzyme is able to hydrolyze substituted xylan. Solvent exposure of the O-2 groups of xylose at the +4, +3, +1, and -3 subsites may allow accommodation of the alpha-1,2-linked 4-O-methyl-D-glucuronic acid side chain in glucuronoxylan at these locations. Furthermore, the uronic acid makes hydrogen bonds and hydrophobic interactions with the enzyme at the +1 subsite, indicating that the sugar decorations in glucuronoxylan are targeted to this proximal aglycone binding site. Accommodation of 3'-linked L-arabinofuranoside decorations is observed in the -2 subsite and could, most likely, be tolerated when bound to xylosides in -3 and +4. A notable feature of the binding mode of decorated substrates is the way in which the subsite specificities are tailored both to prevent the formation of "dead-end" reaction products and to facilitate synergy with the xylan degradation-accessory enzymes such as alpha-glucuronidase. The data described in this report and in the accompanying paper ( Fujimoto, Z., Kaneko, S., Kuno, A., Kobayashi, H., Kusakabe, I., and Mizuno, H. ( 2004) J. Biol. Chem. 279, 9606 - 9614) indicate that the complementarity in the binding of decorated substrates between the glycone and aglycone regions appears to be a conserved feature of GH10 xylanases.
引用
收藏
页码:9597 / 9605
页数:9
相关论文
共 36 条
[1]   Substrate specificity in glycoside hydrolase family 10 - Tyrosine 87 and Leucine 314 play a pivotal, role in discriminating between glucose and xylose binding in the proximal active site of pseudomonas cellulosa xylanase 10A [J].
Andrews, SR ;
Charnock, SJ ;
Lakey, JH ;
Davies, GJ ;
Claeyssens, M ;
Nerinckx, W ;
Underwood, M ;
Sinnott, ML ;
Warren, RAJ ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (30) :23027-23033
[2]  
ATKINS EDT, 1992, PROGR BIOTECHNOL, V7, P39
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   The Pseudomonas cellulosa glycoside hydrolase family 51 arabinofuranosidase exhibits wide substrate specificity [J].
Beylot, MH ;
McKie, VA ;
Voragen, AGJ ;
Doeswijk-Voragen, CHL ;
Gilbert, HJ .
BIOCHEMICAL JOURNAL, 2001, 358 :607-614
[5]   Endo-beta-1,4-xylanase families: differences in catalytic properties [J].
Biely, P ;
Vrsanska, M ;
Tenkanen, M ;
Kluepfel, D .
JOURNAL OF BIOTECHNOLOGY, 1997, 57 (1-3) :151-166
[6]   SUBSTRATE-BINDING SITE OF ENDO-1,4-BETA-XYLANASE OF THE YEAST CRYPTOCOCCUS-ALBIDUS [J].
BIELY, P ;
KRATKY, Z ;
VRSANSKA, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 119 (03) :559-564
[7]  
BRETT CT, 1996, TOPICS PLANT FUNCTIO, V1
[8]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[9]   The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved [J].
Charnock, SJ ;
Spurway, TD ;
Xie, HF ;
Beylot, MH ;
Virden, R ;
Warren, RAJ ;
Hazlewood, GP ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32187-32199
[10]   Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan [J].
Charnock, SJ ;
Lakey, JH ;
Virden, R ;
Hughes, N ;
Sinnott, ML ;
Hazlewood, GP ;
Pickersgill, R ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (05) :2942-2951