Different domains of synaptotagmin control the choice between kiss-and-run and full fusion

被引:173
作者
Wang, CT
Lu, JC
Bai, JH
Chang, PY
Martin, TFJ
Chapman, ER
Jackson, MB
机构
[1] Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Comparat Biosci, Endocrinol Reprod Physiol Program, Madison, WI 53706 USA
[3] Univ Wisconsin, Biophys Program, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature01857
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exocytosis-the release of the contents of a vesicle-proceeds by two mechanisms(1-6). Full fusion occurs when the vesicle and plasma membranes merge. Alternatively, in what is termed kiss-and-run, vesicles can release transmitter during transient contacts with the plasma membrane. Little is known at the molecular level about how the choice between these two pathways is regulated. Here we report amperometric recordings of catecholamine efflux through individual fusion pores. Transfection with synaptotagmin (Syt) IV increased the frequency and duration of kiss-and-run events, but left their amplitude unchanged. Endogenous Syt IV, induced by forskolin treatment, had a similar effect. Full fusion was inhibited by mutation of a Ca2+ ligand in the C(2)A domain of Syt I; kiss-and-run was inhibited by mutation of a homologous Ca2+ ligand in the C2B domain of Syt IV. The Ca2+ sensitivity for full fusion was 5-fold higher with Syt I than Syt IV, but for kiss-and-run the Ca2+ sensitivities differed by a factor of only two. Syt thus regulates the choice between full fusion and kiss-and-run, with Ca2+ binding to the C(2)A and C2B domains playing an important role in this choice.
引用
收藏
页码:943 / 947
页数:5
相关论文
共 28 条
[1]   The exocytotic event in chromaffin cells revealed by patch amperometry [J].
Albillos, A ;
Dernick, G ;
Horstmann, H ;
Almers, W ;
deToledo, GA ;
Lindau, M .
NATURE, 1997, 389 (6650) :509-512
[2]   High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism [J].
Alés, E ;
Tabares, L ;
Poyato, JM ;
Valero, V ;
Lindau, M ;
de Toledo, GA .
NATURE CELL BIOLOGY, 1999, 1 (01) :40-44
[3]  
ALVAREZ DT, 1993, NATURE, V363, P554, DOI DOI 10.1038/363554A0
[4]   C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I [J].
Bai, JH ;
Wang, P ;
Chapman, ER .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (03) :1665-1670
[5]   SYNAPTOTAGMIN - A CALCIUM SENSOR ON THE SYNAPTIC VESICLE SURFACE [J].
BROSE, N ;
PETRENKO, AG ;
SUDHOF, TC ;
JAHN, R .
SCIENCE, 1992, 256 (5059) :1021-1025
[6]   Synaptotagmin:: A Ca2+ sensor that triggers exocytosis? [J].
Chapman, ER .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (07) :498-508
[7]   DELAY IN VESICLE FUSION REVEALED BY ELECTROCHEMICAL MONITORING OF SINGLE SECRETORY EVENTS IN ADRENAL CHROMAFFIN CELLS [J].
CHOW, RH ;
VONRUDEN, L ;
NEHER, E .
NATURE, 1992, 356 (6364) :60-63
[8]  
Chow Robert H., 1995, P245
[9]   ON THE STOCHASTIC PROPERTIES OF BURSTS OF SINGLE ION CHANNEL OPENINGS AND OF CLUSTERS OF BURSTS [J].
COLQUHOUN, D ;
HAWKES, AG .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1982, 300 (1098) :1-59
[10]  
CORMACK B, 1994, CURRENT PROTOCOLS MO