Control of Electron Transfer from Lead-Salt Nanocrystals to TiO2

被引:79
作者
Hyun, Byung-Ryool [1 ]
Bartnik, A. C. [1 ]
Sun, Liangfeng [1 ]
Hanrath, Tobias [2 ]
Wise, F. W. [1 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14850 USA
[2] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14850 USA
基金
美国国家科学基金会;
关键词
electron transfer; Marcus theory; solvent reorganization energy; electronic coupling; spacer length; anchor groups; TITANIUM-DIOXIDE NANOPARTICLES; COLLOIDAL PBS NANOCRYSTALS; QUANTUM DOTS; ANCHORING GROUPS; CHARGE-TRANSFER; SOLAR-CELLS; DIELECTRIC SPHERES; GOLD ELECTRODES; FREE-ENERGY; MOLECULES;
D O I
10.1021/nl200718w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The roles of solvent reorganization energy and electronic coupling strength on the transfer of photoexcited electrons from PbS nanocrystals to TiO2 nanoparticles are investigated. We find that the electron transfer depends only wealdy on the solvent, in contrast to the strong dependence in the nanocrystal-molecule system. This is ascribed to the larger size of the acceptor in this system, and is accounted for by Marcus theory. The electronic coupling of the PbS and TiO2 is varied by changing the length, aliphatic and aromatic structure, and anchor groups of the linker molecules. Shorter linker molecules consistently lead to faster electron transfer. Surprisingly, linker molecules of the same length but distinct chemical structures yield similar electron transfer rates. In contrast, the electron transfer rate can vary dramatically with different anchor groups.
引用
收藏
页码:2126 / 2132
页数:7
相关论文
共 68 条
[41]   Colloidal synthesis of nanocrystals and nanocrystal superlattices [J].
Murray, CB ;
Sun, SH ;
Gaschler, W ;
Doyle, H ;
Betley, TA ;
Kagan, CR .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :47-56
[42]   Calculation of electrostatic force between two charged dielectric spheres by the re-expansion method [J].
Nakajima, Y ;
Sato, T .
JOURNAL OF ELECTROSTATICS, 1999, 45 (03) :213-226
[43]   Use of U-shaped donor-bridge-acceptor molecules to study electron tunneling through nonbonded contacts [J].
Napper, AM ;
Head, NJ ;
Oliver, AM ;
Shephard, MJ ;
Paddon-Row, MN ;
Read, I ;
Waldeck, DH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (34) :10171-10181
[44]  
Newton M. D., 2007, ADV CHEM PHYS MEMORY, P303
[45]   QUANTUM CHEMICAL PROBES OF ELECTRON-TRANSFER KINETICS - THE NATURE OF DONOR-ACCEPTOR INTERACTIONS [J].
NEWTON, MD .
CHEMICAL REVIEWS, 1991, 91 (05) :767-792
[46]   Anchor group influence on molecule-metal oxide interfaces:: Periodic hybrid DFT study of pyridine bound to TiO2 via carboxylic and phosphonic acid [J].
Nilsing, M ;
Persson, P ;
Ojamäe, L .
CHEMICAL PHYSICS LETTERS, 2005, 415 (4-6) :375-380
[47]   Electron transmission through molecules and molecular interfaces [J].
Nitzan, A .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2001, 52 :681-750
[48]   LONG-RANGE ELECTRON-TRANSFER IN HELICAL POLYPROLINE-II OLIGOPEPTIDES [J].
OGAWA, MY ;
MOREIRA, I ;
WISHART, JF ;
ISIED, SS .
CHEMICAL PHYSICS, 1993, 176 (2-3) :589-600
[49]   PHOTOINDUCED ELECTRON-TRANSFER REACTIONS IN A CHLOROPHYLLIDE PHEOPHORBIDE CYCLOPHANE - A MODEL FOR PHOTOSYNTHETIC REACTION CENTERS [J].
OVERFIELD, RE ;
SCHERZ, A ;
KAUFMANN, KJ ;
WASIELEWSKI, MR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1983, 105 (18) :5747-5752
[50]   Direct comparison of the electronic coupling efficiency of sulfur and selenium anchoring groups for molecules adsorbed onto gold electrodes [J].
Patrone, L ;
Palacin, S ;
Bourgoin, JP ;
Lagoute, J ;
Zambelli, T ;
Gauthier, S .
CHEMICAL PHYSICS, 2002, 281 (2-3) :325-332