Heat transport in silicon from first-principles calculations

被引:605
作者
Esfarjani, Keivan [1 ]
Chen, Gang [1 ]
Stokes, Harold T. [2 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Brigham Young Univ, Dept Phys, Salt Lake City, UT 84602 USA
关键词
MOLECULAR-DYNAMICS; IRREVERSIBLE-PROCESSES; THERMAL-CONDUCTIVITY; SIMULATION;
D O I
10.1103/PhysRevB.84.085204
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using harmonic and anharmonic force constants extracted from density functional calculations within a supercell, we have developed a relatively simple but general method to compute thermodynamic and thermal properties of any crystal. First, from the harmonic, cubic, and quartic force constants, we construct a force field for molecular dynamics. It is exact in the limit of small atomic displacements and thus does not suffer from inaccuracies inherent in semiempirical potentials such as Stillinger-Weber's. By using the Green-Kubo formula and molecular dynamics simulations, we extract the bulk thermal conductivity. This method is accurate at high temperatures where three-phonon processes need to be included to higher orders, but may suffer from size scaling issues. Next, we use perturbation theory (Fermi golden rule) to extract the phonon lifetimes and compute the thermal conductivity. from the relaxation-time approximation. This method is valid at most temperatures, but will overestimate. at very high temperatures, where higher-order processes neglected in our calculations also contribute. As a test, these methods are applied to bulk crystalline silicon, and the results are compared and differences are discussed in more detail. The presented methodology paves the way for a systematic approach to model heat transport in solids using multiscale modeling, in which the relaxation time due to anharmonic three-phonon processes is calculated quantitatively, in addition to the usual harmonic properties such as phonon frequencies and group velocities. It also allows the construction of an accurate bulk interatomic potentials database.
引用
收藏
页数:11
相关论文
共 35 条
  • [1] EMPIRICAL CHEMICAL PSEUDOPOTENTIAL THEORY OF MOLECULAR AND METALLIC BONDING
    ABELL, GC
    [J]. PHYSICAL REVIEW B, 1985, 31 (10): : 6184 - 6196
  • [2] EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS
    BRENNER, DW
    [J]. PHYSICAL REVIEW B, 1990, 42 (15): : 9458 - 9471
  • [3] Intrinsic lattice thermal conductivity of semiconductors from first principles
    Broido, D. A.
    Malorny, M.
    Birner, G.
    Mingo, Natalio
    Stewart, D. A.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [4] Lattice thermal conductivity of silicon from empirical interatomic potentials
    Broido, DA
    Ward, A
    Mingo, N
    [J]. PHYSICAL REVIEW B, 2005, 72 (01)
  • [5] UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY
    CAR, R
    PARRINELLO, M
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (22) : 2471 - 2474
  • [6] ANHARMONIC CRYSTALS
    COWLEY, RA
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1968, 31 : 123 - +
  • [7] Dames C., 2006, Thermal Conductivity of Nanostructured Thermoelectric Materials
  • [8] Method to extract anharmonic force constants from first principles calculations
    Esfarjani, Keivan
    Stokes, Harold T.
    [J]. PHYSICAL REVIEW B, 2008, 77 (14):
  • [9] QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
    Giannozzi, Paolo
    Baroni, Stefano
    Bonini, Nicola
    Calandra, Matteo
    Car, Roberto
    Cavazzoni, Carlo
    Ceresoli, Davide
    Chiarotti, Guido L.
    Cococcioni, Matteo
    Dabo, Ismaila
    Dal Corso, Andrea
    de Gironcoli, Stefano
    Fabris, Stefano
    Fratesi, Guido
    Gebauer, Ralph
    Gerstmann, Uwe
    Gougoussis, Christos
    Kokalj, Anton
    Lazzeri, Michele
    Martin-Samos, Layla
    Marzari, Nicola
    Mauri, Francesco
    Mazzarello, Riccardo
    Paolini, Stefano
    Pasquarello, Alfredo
    Paulatto, Lorenzo
    Sbraccia, Carlo
    Scandolo, Sandro
    Sclauzero, Gabriele
    Seitsonen, Ari P.
    Smogunov, Alexander
    Umari, Paolo
    Wentzcovitch, Renata M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
  • [10] THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT
    GLASSBRENNER, CJ
    SLACK, GA
    [J]. PHYSICAL REVIEW, 1964, 134 (4A): : 1058 - +