Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family

被引:267
作者
Sanders, Matthew J.
Ali, Zahabia S.
Hegarty, Bronwyn D.
Heath, Richard
Snowden, Michael A.
Carling, David
机构
[1] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, MRC, Ctr Clin Sci,Cellular Stress Grp, London W12 0NN, England
[2] GlaxoSmithKline Inc, Screenign & Cpds Profling, Harlow CM19 5AW, Essex, England
基金
英国医学研究理事会;
关键词
D O I
10.1074/jbc.M706543200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
AMP- activated protein kinase ( AMPK) plays a key role in maintaining energy homeostasis. Activation of AMPK in peripheral tissues has been shown to alleviate the symptoms of metabolic diseases, such as type 2 diabetes, and consequently AMPK is a target for treatment of these diseases. Recently, a small molecule activator ( A- 769662) of AMPK was identified that had beneficial effects on metabolism in ob/ ob mice. Here we show that A- 769662 activates AMPK both allosterically and by inhibiting dephosphorylation of AMPK on Thr- 172, similar to the effects of AMP. A- 769662 activates AMPK harboring a mutation in the gamma subunit that abolishes activation by AMP. An AMPK complex lacking the glycogen binding domain of the beta subunit abolishes the allosteric effect of A- 769662 but not the allosteric activation by AMP. Moreover, mutation of serine 108 to alanine, an autophosphorylation site within the glycogen binding domain of the 1 subunit, almost completely abolishes activation of AMPK by A-769662 in cells and in vitro, while only partially reducing activation by AMP. Based on our results we propose a model for activation of AMPK by A- 769662. Importantly, this model may provide clues for understanding the mechanism by which AMP leads to activation of AMPK, which in turn may help in the identification of other AMPK activators.
引用
收藏
页码:32539 / 32548
页数:10
相关论文
共 48 条
[1]   Components of a calmodulin-dependent protein kinase cascade -: Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase β [J].
Anderson, KA ;
Means, RL ;
Huang, QH ;
Kemp, BE ;
Goldstein, EG ;
Selbert, MA ;
Edelman, AM ;
Fremeau, RT ;
Means, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :31880-31889
[2]   AMP-activated protein kinase plays a role in the control of food intake [J].
Andersson, U ;
Filipsson, K ;
Abbott, CR ;
Woods, A ;
Smith, K ;
Bloom, SR ;
Carling, D ;
Small, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :12005-12008
[3]   Liver adenosine monophosphate-activated kinase-α2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin [J].
Andreelli, F ;
Foretz, M ;
Knauf, C ;
Cani, PD ;
Perrin, C ;
Iglesias, MA ;
Pillot, B ;
Bado, A ;
Tronche, F ;
Mithieux, G ;
Vaulont, S ;
Burcelin, R ;
Viollet, B .
ENDOCRINOLOGY, 2006, 147 (05) :2432-2441
[4]   Effect of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats [J].
Bergeron, R ;
Previs, SF ;
Cline, GW ;
Perret, P ;
Russell, RR ;
Young, LH ;
Shulman, GI .
DIABETES, 2001, 50 (05) :1076-1082
[5]   Chronic treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner [J].
Buhl, ES ;
Jessen, N ;
Schmitz, O ;
Pedersen, SB ;
Pedersen, O ;
Holman, GD ;
Lund, S .
DIABETES, 2001, 50 (01) :12-17
[6]   PURIFICATION AND CHARACTERIZATION OF THE AMP-ACTIVATED PROTEIN-KINASE - COPURIFICATION OF ACETYL-COA CARBOXYLASE KINASE AND 3-HYDROXY-3-METHYLGLUTARYL-COA REDUCTASE KINASE-ACTIVITIES [J].
CARLING, D ;
CLARKE, PR ;
ZAMMIT, VA ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 186 (1-2) :129-136
[7]   The AMP-activated protein kinase cascade - a unifying system for energy control [J].
Carling, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) :18-24
[8]   AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons [J].
Claret, Marc ;
Smith, Mark A. ;
Batterham, Rachel L. ;
Selman, Colin ;
Choudhury, Agharul I. ;
Fryer, Lee G. D. ;
Clements, Melanie ;
Al-Qassab, Hind ;
Heffron, Helen ;
Xu, Allison W. ;
Speakman, John R. ;
Barsh, Gregory S. ;
Viollet, Benoit ;
Vaulont, Sophie ;
Ashford, Michael L. J. ;
Carling, David ;
Withers, Dominic J. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (08) :2325-2336
[9]   Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome [J].
Cool, Barbara ;
Zinker, Bradley ;
Chiou, William ;
Kifle, Lemma ;
Cao, Ning ;
Perham, Matthew ;
Dickinson, Robert ;
Adler, Andrew ;
Gagne, Gerard ;
Iyengar, Rajesh ;
Zhao, Gang ;
Marsh, Kennan ;
Kym, Philip ;
Jung, Paul ;
Camp, Heidi S. ;
Frevert, Ernst .
CELL METABOLISM, 2006, 3 (06) :403-416
[10]   Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase [J].
Crute, BE ;
Seefeld, K ;
Gamble, J ;
Kemp, BE ;
Witters, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (52) :35347-35354