The signature of chemical valence in the electrical conduction through a single-atom contact

被引:561
作者
Scheer, E [1 ]
Agrait, N
Cuevas, JC
Yeyati, AL
Ludoph, B
Martin-Rodero, A
Bollinger, GR
van Ruitenbeek, JM
Urbina, C
机构
[1] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Autonoma Madrid, Inst Univ Ciencia Mat Nicolas Cabrera, Dept Fis Mat Condensada C3, Lab Bajas Temp, E-28049 Madrid, Spain
[3] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada C5, E-28049 Madrid, Spain
[4] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands
[5] Univ Karlsruhe, Inst Phys, D-76128 Karlsruhe, Germany
关键词
D O I
10.1038/28112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fabrication of structures at the atomic scale is now possible using state-of-the-art techniques for manipulating individual atoms(1), and it may become possible to design electrical circuits atom by atom. A prerequisite for successful design is a knowledge of the relationship between the macroscopic electrical characteristics of such circuits and the quantum properties of the individual atoms used as building blocks. As a first step, we show here that the chemical valence determines the conduction properties of the simplest imaginable circuit - a one-atom contact between two metallic banks. The extended quantum states that carry the current from one bank to the other necessarily proceed through the valence orbitals of the constriction atom. It thus seems reasonable to conjecture that the number of current-carrying modes (or 'channels') of a one-atom contact is determined by the number of available valence orbitals, and so should strongly differ for metallic elements in different series of the periodic table. We have tested this conjecture using scanning tunnelling microscopy and mechanically controllable break-junction techniques(2,3) to obtain atomic-size constrictions for four different metallic elements (Pb, Al, Nb and An), covering a broad range of valences and orbital structures. Our results demonstrate unambiguously a direct link between valence orbitals and the number of conduction channels in one-atom contacts.
引用
收藏
页码:154 / 157
页数:4
相关论文
共 21 条
[1]   CONDUCTANCE STEPS AND QUANTIZATION IN ATOMIC-SIZE CONTACTS [J].
AGRAIT, N ;
RODRIGO, JG ;
VIEIRA, S .
PHYSICAL REVIEW B, 1993, 47 (18) :12345-12348
[2]   AC JOSEPHSON EFFECT IN A SINGLE QUANTUM CHANNEL [J].
AVERIN, D ;
BARDAS, A .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1831-1834
[3]   QUANTUM TRANSPORT IN SEMICONDUCTOR-SUPERCONDUCTOR MICROJUNCTIONS [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1992, 46 (19) :12841-12844
[4]   Local density of states in a dirty normal metal connected to a superconductor [J].
Belzig, W ;
Bruder, C ;
Schon, G .
PHYSICAL REVIEW B, 1996, 54 (13) :9443-9448
[5]   Conductance eigenchannels in nanocontacts [J].
Brandbyge, M ;
Sorensen, MR ;
Jacobsen, KW .
PHYSICAL REVIEW B, 1997, 56 (23) :14956-14959
[6]  
BRTUS EN, 1997, PHYS REV B, V55, P12666
[7]   CONFINEMENT OF ELECTRONS TO QUANTUM CORRALS ON A METAL-SURFACE [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
SCIENCE, 1993, 262 (5131) :218-220
[8]   Hamiltonian approach to the transport properties of superconducting quantum point [J].
Cuevas, JC ;
MartinRodero, A ;
Yeyati, AL .
PHYSICAL REVIEW B, 1996, 54 (10) :7366-7379
[9]   Microscopic origin of conducting channels in metallic atomic-size contacts [J].
Cuevas, JC ;
Yeyati, AL ;
Martin-Rodero, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :1066-1069
[10]  
KRAUS JM, 1995, NATURE, V375, P767