Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors

被引:187
作者
Caldwell, Joshua D. [1 ]
Glembocki, Orest [1 ]
Bezares, Francisco J. [1 ]
Bassim, Nabil D. [1 ]
Rendell, Ronald W. [1 ]
Feygelson, Mariya [1 ]
Ukaegbu, Maraizu [2 ]
Kasica, Richard [3 ]
Shirey, Loretta [1 ]
Hosten, Charles [2 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Howard Univ, Dept Chem, Washington, DC 20059 USA
[3] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
关键词
surface enhanced Raman scattering; SERS; electron-beam lithography; reactive ion etching; plasmonics; nanoparticles; plasmonic arrays; grating; SILVER NANOPARTICLES; SPECTROSCOPY; THIOPHENOL; ADSORPTION; SIZE; AG;
D O I
10.1021/nn200636t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efforts to create reproducible surface-enhanced Raman scattering (SERS)-based chemical and biological sensors has been hindered by difficulties in fabricating large-area SERS-active substrates with a uniform, reproducible SERS response that still provides sufficient enhancement for easy detection. Here we report on periodic arrays of Au-capped, vertically aligned silicon nanopillars that are embedded in a Au plane upon a Si substrate. We illustrate that these arrays are ideal for use as SERS sensor templates, in that they provide large, uniform and reproducible average enhancement factors up to similar to 1.2 x 10(8) over the structure surface area. We discuss the impact of the overall geometry of the structures upon the SERS response at 532, 633, and 785 nm incident laser wavelengths. Calculations of the electromagnetic field distributions and Intensities within such structures were performed and both the wavelength dependence of the predicted SERS response and the field distribution within the nanopillar structure are discussed and support the experimental results we report.
引用
收藏
页码:4046 / 4055
页数:10
相关论文
共 26 条
[1]   Metal-adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering [J].
Alexson, Dimitri A. ;
Badescu, Stefan C. ;
Glembocki, Orest J. ;
Prokes, Sharka M. ;
Rendell, Ronald W. .
CHEMICAL PHYSICS LETTERS, 2009, 477 (1-3) :144-149
[2]   Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals [J].
Baumberg, JJ ;
Kelf, TA ;
Sugawara, Y ;
Cintra, S ;
Abdelsalam, ME ;
Bartlett, PN ;
Russell, AE .
NANO LETTERS, 2005, 5 (11) :2262-2267
[3]  
BEZARES FJ, 2011, PLASMONICS UNPUB
[4]  
CARRON KT, 1991, J PHYS CHEM-US, P95
[5]   A large-area hybrid metallic nanostructure array and its optical properties [J].
Chen, X. ;
Jiang, K. .
NANOTECHNOLOGY, 2008, 19 (21)
[6]   Resonant field enhancements from metal nanoparticle arrays [J].
Genov, DA ;
Sarychev, AK ;
Shalaev, VM ;
Wei, A .
NANO LETTERS, 2004, 4 (01) :153-158
[7]   Dielectric-substrate-induced surface-enhanced Raman scattering [J].
Glembocki, O. J. ;
Rendell, R. W. ;
Alexson, D. A. ;
Prokes, S. M. ;
Fu, A. ;
Mastro, M. A. .
PHYSICAL REVIEW B, 2009, 80 (08)
[8]   Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing [J].
Gopinath, Ashwin ;
Boriskina, Svetlana V. ;
Premasiri, W. Ranjith ;
Ziegler, Lawrence ;
Reinhard, Bjoern M. ;
Dal Negro, Luca .
NANO LETTERS, 2009, 9 (11) :3922-3929
[9]   ADSORPTION AND SURFACE STRUCTURAL CHEMISTRY OF THIOPHENOL, BENZYL MERCAPTAN, AND ALKYL MERCAPTANS - COMPARATIVE-STUDIES AT AG(111) AND PT(111) ELECTRODES BY MEANS OF AUGER-SPECTROSCOPY, ELECTRON-ENERGY LOSS SPECTROSCOPY, LOW-ENERGY ELECTRON-DIFFRACTION, AND ELECTROCHEMISTRY [J].
GUI, JY ;
STERN, DA ;
FRANK, DG ;
LU, F ;
ZAPIEN, DC ;
HUBBARD, AT .
LANGMUIR, 1991, 7 (05) :955-963
[10]   Leveraging Nanoscale Plasmonic Modes to Achieve Reproducible Enhancement of Light [J].
Hill, Ryan T. ;
Mock, Jack J. ;
Urzhumov, Yaroslav ;
Sebba, David S. ;
Oldenburg, Steven J. ;
Chen, Shiuan-Yeh ;
Lazarides, Anne A. ;
Chilkoti, Ashutosh ;
Smith, David R. .
NANO LETTERS, 2010, 10 (10) :4150-4154