Leveraging Nanoscale Plasmonic Modes to Achieve Reproducible Enhancement of Light

被引:145
作者
Hill, Ryan T. [2 ]
Mock, Jack J. [1 ,3 ]
Urzhumov, Yaroslav [1 ,3 ]
Sebba, David S. [4 ]
Oldenburg, Steven J. [4 ]
Chen, Shiuan-Yeh [1 ,5 ]
Lazarides, Anne A. [2 ,3 ,5 ]
Chilkoti, Ashutosh [2 ,6 ]
Smith, David R. [1 ,3 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Duke Univ, CBIMMS, Durham, NC 27708 USA
[3] Duke Univ, CMIP, Durham, NC 27708 USA
[4] NanoComposix Inc, San Diego, CA 92111 USA
[5] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[6] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
关键词
Nanophotonics; plasmon resonant nanoparticles; surface-enhanced resonant Raman scattering; gold film; doughnut; RAMAN-SCATTERING; SILVER NANOPARTICLES; GOLD NANOPARTICLES; SPECTROSCOPY; RESONANCES; FILM; SERS; METAMATERIALS; ASSEMBLIES; CLUSTERS;
D O I
10.1021/nl102443p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process. between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering With a spacer layer of roughly 16 nm, all NPs exhibit a strong Raman signal that decays rapidly as the spacer layer is increased
引用
收藏
页码:4150 / 4154
页数:5
相关论文
共 43 条
[1]   A SERS-active system based on silver nanoparticles tethered to a deposited silver film [J].
Anderson, D. J. ;
Moskovits, M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (28) :13722-13727
[2]   Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum [J].
Aubry, Alexandre ;
Lei, Dang Yuan ;
Fernandez-Dominguez, Antonio I. ;
Sonnefraud, Yannick ;
Maier, Stefan A. ;
Pendry, J. B. .
NANO LETTERS, 2010, 10 (07) :2574-2579
[3]   Nanoantenna array-induced fluorescence enhancement and reduced lifetimes [J].
Bakker, Reuben M. ;
Drachev, Vladimir P. ;
Liu, Zhengtong ;
Yuan, Hsiao-Kuan ;
Pedersen, Rasmus H. ;
Boltasseva, Alexandra ;
Chen, Jiji ;
Irudayaraj, Joseph ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. .
NEW JOURNAL OF PHYSICS, 2008, 10
[4]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[5]   Quantitative Amplification of Cy5 SERS in 'Warm Spots' Created by Plasmonic Coupling in Nanoparticle Assemblies of Controlled Structure [J].
Chen, Shiuan-Yeh ;
Lazarides, Anne A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (28) :12167-12175
[6]   Plasmonic laser antenna [J].
Cubukcu, Ertugrul ;
Kort, Eric A. ;
Crozier, Kenneth B. ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[7]   Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering [J].
Daniels, JK ;
Chumanov, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (38) :17936-17942
[8]   PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator [J].
Dionne, Jennifer A. ;
Diest, Kenneth ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2009, 9 (02) :897-902
[9]   Toward Raman fingerprints of single dye molecules at atomically smooth Au(111) [J].
Domke, Katrin F. ;
Zhang, Dai ;
Pettinger, Bruno .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (45) :14721-14727
[10]   Labeled gold nanoparticles immobilized at smooth metallic substrates: Systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering [J].
Driskell, Jeremy D. ;
Lipert, Robert J. ;
Porter, Marc D. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (35) :17444-17451